BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 19185963)

  • 21. Adsorption and inhibition of butyrylcholinesterase by different engineered nanoparticles.
    Wang Z; Zhang K; Zhao J; Liu X; Xing B
    Chemosphere; 2010 Mar; 79(1):86-92. PubMed ID: 20089293
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles.
    You J; Zhang Y; Hu Z
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):161-7. PubMed ID: 21398101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay.
    Pan X; Redding JE; Wiley PA; Wen L; McConnell JS; Zhang B
    Chemosphere; 2010 Mar; 79(1):113-6. PubMed ID: 20106502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inactivation of S. epidermidis, B. subtilis, and E. coli bacteria bioaerosols deposited on a filter utilizing airborne silver nanoparticles.
    Lee BU; Yun SH; Ji JH; Bae GN
    J Microbiol Biotechnol; 2008 Jan; 18(1):176-82. PubMed ID: 18239437
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intrinsic biological property of colloidal fullerene nanoparticles (nC60): lack of lethality after high dose exposure to human epidermal and bacterial cells.
    Xia XR; Monteiro-Riviere NA; Riviere JE
    Toxicol Lett; 2010 Aug; 197(2):128-34. PubMed ID: 20493935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrated approach to evaluating the toxicity of novel cysteine-capped silver nanoparticles to Escherichia coli and Pseudomonas aeruginosa.
    Priester JH; Singhal A; Wu B; Stucky GD; Holden PA
    Analyst; 2014 Mar; 139(5):954-63. PubMed ID: 24343373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel microbial route to synthesize silver nanoparticles using spore crystal mixture of Bacillus thuringiensis.
    Jain D; Kachhwaha S; Jain R; Srivastava G; Kothari SL
    Indian J Exp Biol; 2010 Nov; 48(11):1152-6. PubMed ID: 21117457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and biological evaluation of novel luteolin derivatives as antibacterial agents.
    Lv PC; Li HQ; Xue JY; Shi L; Zhu HL
    Eur J Med Chem; 2009 Feb; 44(2):908-14. PubMed ID: 18313801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anti-microbial activities of aerosolized transition metal oxide nanoparticles.
    Wang Z; Lee YH; Wu B; Horst A; Kang Y; Tang YJ; Chen DR
    Chemosphere; 2010 Jul; 80(5):525-9. PubMed ID: 20478610
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival.
    Dror-Ehre A; Mamane H; Belenkova T; Markovich G; Adin A
    J Colloid Interface Sci; 2009 Nov; 339(2):521-6. PubMed ID: 19726047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria.
    Simon-Deckers A; Loo S; Mayne-L'hermite M; Herlin-Boime N; Menguy N; Reynaud C; Gouget B; Carrière M
    Environ Sci Technol; 2009 Nov; 43(21):8423-9. PubMed ID: 19924979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction between oxide nanoparticles and biomolecules of the bacterial cell envelope as examined by infrared spectroscopy.
    Jiang W; Yang K; Vachet RW; Xing B
    Langmuir; 2010 Dec; 26(23):18071-7. PubMed ID: 21062006
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ecotoxicity of selected nano-materials to aquatic organisms.
    Blaise C; Gagné F; Férard JF; Eullaffroy P
    Environ Toxicol; 2008 Oct; 23(5):591-8. PubMed ID: 18528913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The antibacterial properties of a novel chitosan-Ag-nanoparticle composite.
    Sanpui P; Murugadoss A; Prasad PV; Ghosh SS; Chattopadhyay A
    Int J Food Microbiol; 2008 May; 124(2):142-6. PubMed ID: 18433906
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells.
    Sinha R; Karan R; Sinha A; Khare SK
    Bioresour Technol; 2011 Jan; 102(2):1516-20. PubMed ID: 20797851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli.
    Li M; Lin D; Zhu L
    Environ Pollut; 2013 Feb; 173():97-102. PubMed ID: 23202638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential susceptibility of Escherichia coli cells toward transition metal-doped and matrix-embedded ZnO nanoparticles.
    Dutta RK; Sharma PK; Bhargava R; Kumar N; Pandey AC
    J Phys Chem B; 2010 Apr; 114(16):5594-9. PubMed ID: 20369857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil.
    Kool PL; Ortiz MD; van Gestel CA
    Environ Pollut; 2011 Oct; 159(10):2713-9. PubMed ID: 21724309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y
    J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action.
    Bondarenko O; Ivask A; Käkinen A; Kahru A
    Environ Pollut; 2012 Oct; 169():81-9. PubMed ID: 22694973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.