These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 19186052)

  • 41. Comparison of the removal of 2,4-dichlorophenol and phenol from polluted water, by peroxidases from tomato hairy roots, and protective effect of polyethylene glycol.
    González PS; Agostini E; Milrad SR
    Chemosphere; 2008 Jan; 70(6):982-9. PubMed ID: 17904197
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of influent pH and alkalinity on the removal of chlorophenols in sequential anaerobic-aerobic reactors.
    Majumder PS; Gupta SK
    Bioresour Technol; 2009 Mar; 100(5):1881-3. PubMed ID: 19019673
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biodegradation of phenol at low temperature using two-phase partitioning bioreactors.
    Guieysse B; Autem Y; Soares A
    Water Sci Technol; 2005; 52(10-11):97-105. PubMed ID: 16459781
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetic studies on the adsorption of phenol, 4-chlorophenol, and 2,4-dichlorophenol from water using activated carbons.
    Tseng RL; Wu KT; Wu FC; Juang RS
    J Environ Manage; 2010 Nov; 91(11):2208-14. PubMed ID: 20621413
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamic sorption of ionizable organic compounds (IOCs) and xylene from water using geomaterial-modified montmorillonite.
    Houari M; Hamdi B; Brendle J; Bouras O; Bollinger JC; Baudu M
    J Hazard Mater; 2007 Aug; 147(3):738-45. PubMed ID: 17363159
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Use of non-living lyophilized Phanerochaete chrysosporium cultivated in various media for phenol removal.
    Pernyeszi T; Farkas V; Felinger A; Boros B; Dékány I
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8550-8562. PubMed ID: 29313200
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Removal of Pb(II) from aqueous solution by seed powder of Prosopis juliflora DC.
    Jayaram K; Prasad MN
    J Hazard Mater; 2009 Sep; 169(1-3):991-7. PubMed ID: 19464107
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biodegradation of p-chlorophenol by a microalgae consortium.
    Lima SA; Raposo MF; Castro PM; Morais RM
    Water Res; 2004 Jan; 38(1):97-102. PubMed ID: 14630107
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon.
    Aktaş O; Ceçen F
    J Hazard Mater; 2007 Mar; 141(3):769-77. PubMed ID: 16945482
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica.
    Bankar AV; Kumar AR; Zinjarde SS
    J Hazard Mater; 2009 Oct; 170(1):487-94. PubMed ID: 19467781
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biodegradation of phenol by aerobic granulation technology.
    Khan F; Zain Khan M; Qamar Usmani S; Sabir S
    Water Sci Technol; 2009; 59(2):273-8. PubMed ID: 19182337
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface modification of Corynebacterium glutamicum for enhanced Reactive Red 4 biosorption.
    Mao J; Won SW; Vijayaraghavan K; Yun YS
    Bioresour Technol; 2009 Feb; 100(3):1463-6. PubMed ID: 18782665
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass.
    Liu Z; Zhang FS
    J Hazard Mater; 2009 Aug; 167(1-3):933-9. PubMed ID: 19261383
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Determination of kinetic parameters in the biosorption of Cr (VI) on immobilized Bacillus cereus M(1)(16) in a continuous packed bed column reactor.
    Maiti SK; Bera D; Chattopadhyay P; Ray L
    Appl Biochem Biotechnol; 2009 Nov; 159(2):488-504. PubMed ID: 19333567
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Effect of pH on the biosorption behavior of 4-CP onto anaerobic granular sludge].
    Gao RY; Wang JL
    Huan Jing Ke Xue; 2007 Apr; 28(4):791-4. PubMed ID: 17639939
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Degradation of chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and TiO(2)/UV.
    González LF; Sarria V; Sánchez OF
    Bioresour Technol; 2010 May; 101(10):3493-9. PubMed ID: 20097065
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Application of Brassica napus hairy root cultures for phenol removal from aqueous solutions.
    Coniglio MS; Busto VD; González PS; Medina MI; Milrad S; Agostini E
    Chemosphere; 2008 Jul; 72(7):1035-42. PubMed ID: 18499219
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced adsorption of phenol from water by a novel polar post-crosslinked polymeric adsorbent.
    Zeng X; Fan Y; Wu G; Wang C; Shi R
    J Hazard Mater; 2009 Sep; 169(1-3):1022-8. PubMed ID: 19443106
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Combination of hydrodechlorination and biodegradation for the abatement of chlorophenols.
    Zhou S; Jin X; Sun F; Zhou H; Yang C; Xia C
    Water Sci Technol; 2012; 65(4):780-6. PubMed ID: 22277240
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of 3-chlorophenol from water using rice-straw-based carbon.
    Wang SL; Tzou YM; Lu YH; Sheng G
    J Hazard Mater; 2007 Aug; 147(1-2):313-8. PubMed ID: 17276599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.