BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 19186131)

  • 1. Determinants of water permeability through nanoscopic hydrophilic channels.
    Portella G; de Groot BL
    Biophys J; 2009 Feb; 96(3):925-38. PubMed ID: 19186131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water permeability of gramicidin A-treated lipid bilayer membranes.
    Rosenberg PA; Finkelstein A
    J Gen Physiol; 1978 Sep; 72(3):341-50. PubMed ID: 81265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents.
    Mamonov AB; Coalson RD; Nitzan A; Kurnikova MG
    Biophys J; 2003 Jun; 84(6):3646-61. PubMed ID: 12770873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Invariance of single-file water mobility in gramicidin-like peptidic pores as function of pore length.
    Portella G; Pohl P; de Groot BL
    Biophys J; 2007 Jun; 92(11):3930-7. PubMed ID: 17369423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmotic flow in membrane pores of molecular size.
    Hill AE
    J Membr Biol; 1994 Feb; 137(3):197-203. PubMed ID: 7514228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmotic permeability in a molecular dynamics simulation of water transport through a single-occupancy pore.
    Kalko SG; Hernández JA; Grigera JR; Fischbarg J
    Biochim Biophys Acta; 1995 Dec; 1240(2):159-66. PubMed ID: 8541287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of peptide-membrane interactions to modulate single-file water transport through modified gramicidin channels.
    Portella G; Polupanow T; Zocher F; Boytsov DA; Pohl P; Diederichsen U; de Groot BL
    Biophys J; 2012 Oct; 103(8):1698-705. PubMed ID: 23083713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pores formed by the nicotinic receptor m2delta Peptide: a molecular dynamics simulation study.
    Law RJ; Tieleman DP; Sansom MS
    Biophys J; 2003 Jan; 84(1):14-27. PubMed ID: 12524262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores.
    Beckstein O; Sansom MS
    Phys Biol; 2004 Jun; 1(1-2):42-52. PubMed ID: 16204821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-file transport of water through membrane channels.
    Horner A; Pohl P
    Faraday Discuss; 2018 Sep; 209(0):9-33. PubMed ID: 30014085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desformylgramicidin: a model channel with an extremely high water permeability.
    Saparov SM; Antonenko YN; Koeppe RE; Pohl P
    Biophys J; 2000 Nov; 79(5):2526-34. PubMed ID: 11053127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel.
    Pomès R; Roux B
    Biophys J; 1996 Jul; 71(1):19-39. PubMed ID: 8804586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osmotic and diffusive flows in single-file pores: new approach to modeling pore occupancy states.
    Kepner G
    Theor Biol Med Model; 2018 Oct; 15(1):15. PubMed ID: 30269687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water transport and ion-water interaction in the gramicidin channel.
    Dani JA; Levitt DG
    Biophys J; 1981 Aug; 35(2):501-8. PubMed ID: 6168311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly permeable artificial water channels that can self-assemble into two-dimensional arrays.
    Shen YX; Si W; Erbakan M; Decker K; De Zorzi R; Saboe PO; Kang YJ; Majd S; Butler PJ; Walz T; Aksimentiev A; Hou JL; Kumar M
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):9810-5. PubMed ID: 26216964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The gramicidin A channel: a review of its permeability characteristics with special reference to the single-file aspect of transport.
    Finkelstein A; Andersen OS
    J Membr Biol; 1981 Apr; 59(3):155-71. PubMed ID: 6165825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of protein flexibility in ion permeation: a case study in gramicidin A.
    Baştuğ T; Gray-Weale A; Patra SM; Kuyucak S
    Biophys J; 2006 Apr; 90(7):2285-96. PubMed ID: 16415054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water in ion channels and pores--simulation studies.
    Sansom MS; Bond P; Beckstein O; Biggin PC; Faraldo-Gómez J; Law RJ; Patargias G; Tieleman DP
    Novartis Found Symp; 2002; 245():66-78; discussion 79-83, 165-8. PubMed ID: 12027016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion-water and ion-polypeptide correlations in a gramicidin-like channel. A molecular dynamics study.
    Jordan PC
    Biophys J; 1990 Nov; 58(5):1133-56. PubMed ID: 1705448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.