These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 19188009)
1. Identification of Chinese cabbage genotypes with low cadmium accumulation for food safety. Liu W; Zhou Q; Sun Y; Liu R Environ Pollut; 2009 Jun; 157(6):1961-7. PubMed ID: 19188009 [TBL] [Abstract][Full Text] [Related]
2. Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. Liu W; Zhou Q; An J; Sun Y; Liu R J Hazard Mater; 2010 Jan; 173(1-3):737-43. PubMed ID: 19775811 [TBL] [Abstract][Full Text] [Related]
3. Lead accumulation in different Chinese cabbage cultivars and screening for pollution-safe cultivars. Liu W; Zhou Q; Zhang Y; Wei S J Environ Manage; 2010; 91(3):781-8. PubMed ID: 19942339 [TBL] [Abstract][Full Text] [Related]
4. Effects of soil properties on heavy metal accumulation in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) in Pearl River Delta, China. Liu Y; Kong GT; Jia QY; Wang F; Xu RS; Li FB; Wang Y; Zhou HR J Environ Sci Health B; 2007 Feb; 42(2):219-27. PubMed ID: 17365337 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of cadmium phytoremediation potential in Chinese cabbage cultivars. Liu W; Zhou Q; Zhang Z; Hua T; Cai Z J Agric Food Chem; 2011 Aug; 59(15):8324-30. PubMed ID: 21739993 [TBL] [Abstract][Full Text] [Related]
6. Differences of cadmium absorption and accumulation in selected vegetable crops. Ni WZ; Yang XE; Long XX J Environ Sci (China); 2002 Jul; 14(3):399-405. PubMed ID: 12211993 [TBL] [Abstract][Full Text] [Related]
7. A newly found cadmium accumulator--Malva sinensis Cavan. Zhang S; Chen M; Li T; Xu X; Deng L J Hazard Mater; 2010 Jan; 173(1-3):705-9. PubMed ID: 19767144 [TBL] [Abstract][Full Text] [Related]
8. Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Grispen VM; Nelissen HJ; Verkleij JA Environ Pollut; 2006 Nov; 144(1):77-83. PubMed ID: 16515826 [TBL] [Abstract][Full Text] [Related]
9. Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. Zeng F; Mao Y; Cheng W; Wu F; Zhang G Environ Pollut; 2008 May; 153(2):309-14. PubMed ID: 17905495 [TBL] [Abstract][Full Text] [Related]
10. Screen of Chinese weed species for cadmium tolerance and accumulation characteristics. Wei S; Zhou Q Int J Phytoremediation; 2008; 10(6):584-97. PubMed ID: 19260234 [TBL] [Abstract][Full Text] [Related]
11. Screening of Cd-safe genotypes of Chinese cabbage in field condition and Cd accumulation in relation to organic acids in two typical genotypes under long-term Cd stress. Wang X; Shi Y; Chen X; Huang B Environ Sci Pollut Res Int; 2015 Nov; 22(21):16590-9. PubMed ID: 26081776 [TBL] [Abstract][Full Text] [Related]
12. Low root/shoot (R/S) biomass ratio can be an indicator of low cadmium accumulation in the shoot of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) cultivars. Xu ZM; Mei XQ; Tan L; Li QS; Wang LL; He BY; Guo SH; Zhou C; Ye HJ Environ Sci Pollut Res Int; 2018 Dec; 25(36):36328-36340. PubMed ID: 30368704 [TBL] [Abstract][Full Text] [Related]
13. Assessment of the phytoextraction potential of high biomass crop plants. Hernández-Allica J; Becerril JM; Garbisu C Environ Pollut; 2008 Mar; 152(1):32-40. PubMed ID: 17644228 [TBL] [Abstract][Full Text] [Related]
14. Screening for Cd-Safe Cultivars of Chinese Cabbage and a Preliminary Study on the Mechanisms of Cd Accumulation. Wang J; Yu N; Mu G; Shinwari KI; Shen Z; Zheng L Int J Environ Res Public Health; 2017 Apr; 14(4):. PubMed ID: 28387709 [TBL] [Abstract][Full Text] [Related]
15. Selection for Cd Pollution-Safe Cultivars of Chinese Kale (Brassica alboglabra L. H. Bailey) and Biochemical Mechanisms of the Cultivar-Dependent Cd Accumulation Involving in Cd Subcellular Distribution. Guo JJ; Tan X; Fu HL; Chen JX; Lin XX; Ma Y; Yang ZY J Agric Food Chem; 2018 Feb; 66(8):1923-1934. PubMed ID: 29425449 [TBL] [Abstract][Full Text] [Related]
16. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.). Wang J; Yuan J; Yang Z; Huang B; Zhou Y; Xin J; Gong Y; Yu H J Agric Food Chem; 2009 Oct; 57(19):8942-9. PubMed ID: 19739670 [TBL] [Abstract][Full Text] [Related]
17. A comparative study of cadmium phytoextraction by accumulator and weed species. Ghosh M; Singh SP Environ Pollut; 2005 Jan; 133(2):365-71. PubMed ID: 15519467 [TBL] [Abstract][Full Text] [Related]
18. Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Ji P; Sun T; Song Y; Ackland ML; Liu Y Environ Pollut; 2011 Mar; 159(3):762-8. PubMed ID: 21185631 [TBL] [Abstract][Full Text] [Related]
19. Bidens tripartite L.: a Cd-accumulator confirmed by pot culture and site sampling experiment. Wei S; Niu R; Srivastava M; Zhou Q; Wu Z; Sun T; Hu Y; Li Y J Hazard Mater; 2009 Oct; 170(2-3):1269-72. PubMed ID: 19515488 [TBL] [Abstract][Full Text] [Related]
20. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Koopmans GF; Römkens PF; Fokkema MJ; Song J; Luo YM; Japenga J; Zhao FJ Environ Pollut; 2008 Dec; 156(3):905-14. PubMed ID: 18644664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]