These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19188948)

  • 1. Intra-system optical interconnection module directly integrated on a polymeric optical waveguide.
    Rho BS; Hwang SH; Lim JW; Kim GW; Cho CH; Lee WJ
    Opt Express; 2009 Feb; 17(3):1215-21. PubMed ID: 19188948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interchip link system using an optical wiring method.
    Cho IK; Ryu JH; Jeong MY
    Opt Lett; 2008 Aug; 33(16):1881-3. PubMed ID: 18709120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and transmission of optical polymer waveguide backplane for high - performance computers.
    Yang S; Yang L; Li B; Luo F; Wang X; Du Y
    Opt Express; 2020 May; 28(10):14605-14617. PubMed ID: 32403498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-printing tunable interlayer waveguide coupler using low-loss fluorinated polycarbonate.
    Wang C; Zhang D; Ding S; Yue J; Lin H; Zhang X; Cui Z; Shi Z; Chen C
    Opt Lett; 2022 Jun; 47(11):2690-2693. PubMed ID: 35648906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chip- and board-level optical interconnections using rigid flexible optical electrical printed circuit boards.
    Hwang SH; Lee WJ; Lim JW; Jung KY; Cha KS; Rho BS
    Opt Express; 2008 May; 16(11):8077-83. PubMed ID: 18545520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated four-channel directly modulated O-band optical transceiver for radio over fiber application.
    Liu J; Ye Y; Deng L; Liu L; Li Z; Liu F; Zhou Y; Xia J; Liu D
    Opt Express; 2018 Aug; 26(17):21490-21500. PubMed ID: 30130855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency and stable optical transmitter using VCSEL-direct-bonded connector for optical interconnection.
    Kim DW; Lee TW; Cho MH; Park HH
    Opt Express; 2007 Nov; 15(24):15767-75. PubMed ID: 19550861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-slotted hybrid optical waveguides for PCB-compatible optical interconnection.
    Kim JT; Ju JJ; Park S
    Opt Express; 2012 Apr; 20(9):10438-45. PubMed ID: 22535134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of thermally stable and cost-effective polymeric waveguide for optical printed-circuit board.
    Kim DW; Ahn SH; Cho IK; Im DM; Shorab Muslim SM; Park HH
    Opt Express; 2008 Oct; 16(21):16798-805. PubMed ID: 18852788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors.
    Haney MW; Christensen MP; Milojkovic P; Ekman J; Chandramani P; Rozier R; Kiamilev F; Liu Y; Hibbs-Brenner M
    Appl Opt; 1999 Oct; 38(29):6190-200. PubMed ID: 18324143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multichip module with planar-integrated free-space optical vector-matrix-type interconnects.
    Gruber M
    Appl Opt; 2004 Jan; 43(2):463-70. PubMed ID: 14735965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layer-to-layer optical interconnect coupling by soft-lithographic stamping.
    Ni W; Wu X; Wu J
    Opt Express; 2009 Feb; 17(3):1194-202. PubMed ID: 19188946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental demonstration of 10 Gbit/s transmission with an optical backplane system using optical slots.
    Cho IK; Yoon KB; Ahn SH; Sung HK; Ha Sw; Heo YU; Park HH
    Opt Lett; 2005 Jul; 30(13):1635-7. PubMed ID: 16075521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arrayed waveguide collimators for integrating free-space optics on polymeric waveguide devices.
    Shin JS; Lee CH; Shin SY; Huang GH; Chu WS; Oh MC; Noh YO; Lee HJ
    Opt Express; 2014 Oct; 22(20):23801-6. PubMed ID: 25321959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3-D integrated heterogeneous intra-chip free-space optical interconnect.
    Ciftcioglu B; Berman R; Wang S; Hu J; Savidis I; Jain M; Moore D; Huang M; Friedman EG; Wicks G; Wu H
    Opt Express; 2012 Feb; 20(4):4331-45. PubMed ID: 22418191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler.
    Lin X; Hosseini A; Dou X; Subbaraman H; Chen RT
    Opt Express; 2013 Jan; 21(1):60-9. PubMed ID: 23388896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional optoelectronic stacked processor by use of free-space optical interconnection and three-dimensional VLSI chip stacks.
    Li G; Huang D; Yuceturk E; Marchand PJ; Esener SC; Ozguz VH; Liu Y
    Appl Opt; 2002 Jan; 41(2):348-60. PubMed ID: 11899274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monolithically mode division multiplexing photonic integrated circuit for large-capacity optical interconnection.
    Chen G; Yu Y; Zhang X
    Opt Lett; 2016 Aug; 41(15):3543-6. PubMed ID: 27472614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous fabrication of optical channel waveguides and out-of-plane branching mirrors from a polymeric slab structure.
    Kagami M; Hasegawa K; Ito H
    Appl Opt; 1997 Oct; 36(30):7700-7. PubMed ID: 18264288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer waveguides for electro-optical integration in data centers and high-performance computers.
    Dangel R; Hofrichter J; Horst F; Jubin D; La Porta A; Meier N; Soganci IM; Weiss J; Offrein BJ
    Opt Express; 2015 Feb; 23(4):4736-50. PubMed ID: 25836510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.