These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19189047)

  • 1. Na+ mechanism of delta-opioid receptor induced protection from anoxic K+ leakage in the cortex.
    Chao D; Balboni G; Lazarus LH; Salvadori S; Xia Y
    Cell Mol Life Sci; 2009 Mar; 66(6):1105-15. PubMed ID: 19189047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of DOR attenuates anoxic K+ derangement via inhibition of Na+ entry in mouse cortex.
    Chao D; Bazzy-Asaad A; Balboni G; Salvadori S; Xia Y
    Cereb Cortex; 2008 Sep; 18(9):2217-27. PubMed ID: 18203692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. delta-, but not mu-, opioid receptor stabilizes K(+) homeostasis by reducing Ca(2+) influx in the cortex during acute hypoxia.
    Chao D; Bazzy-Asaad A; Balboni G; Xia Y
    J Cell Physiol; 2007 Jul; 212(1):60-7. PubMed ID: 17373650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DOR activation inhibits anoxic/ischemic Na+ influx through Na+ channels via PKC mechanisms in the cortex.
    Chao D; He X; Yang Y; Bazzy-Asaad A; Lazarus LH; Balboni G; Kim DH; Xia Y
    Exp Neurol; 2012 Aug; 236(2):228-39. PubMed ID: 22609332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical delta-opioid receptors potentiate K+ homeostasis during anoxia and oxygen-glucose deprivation.
    Chao D; Donnelly DF; Feng Y; Bazzy-Asaad A; Xia Y
    J Cereb Blood Flow Metab; 2007 Feb; 27(2):356-68. PubMed ID: 16773140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. delta-Opioid receptor antagonism induces NMDA receptor-dependent excitotoxicity in anoxic turtle cortex.
    Pamenter ME; Buck LT
    J Exp Biol; 2008 Nov; 211(Pt 21):3512-7. PubMed ID: 18931323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. delta-Opioid receptors protect from anoxic disruption of Na+ homeostasis via Na+ channel regulation.
    Kang X; Chao D; Gu Q; Ding G; Wang Y; Balboni G; Lazarus LH; Xia Y
    Cell Mol Life Sci; 2009 Nov; 66(21):3505-16. PubMed ID: 19756387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium influx pathways during and after anoxia in rat hippocampal neurons.
    Sheldon C; Diarra A; Cheng YM; Church J
    J Neurosci; 2004 Dec; 24(49):11057-69. PubMed ID: 15590922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ion channel blockade on the distribution of Na, K, Ca and other elements in oxygen-glucose deprived CA1 hippocampal neurons.
    LoPachin RM; Gaughan CL; Lehning EJ; Weber ML; Taylor CP
    Neuroscience; 2001; 103(4):971-83. PubMed ID: 11301205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of N-methyl-D-aspartate receptor attenuates acute responsiveness of delta-opioid receptors.
    Cai YC; Ma L; Fan GH; Zhao J; Jiang LZ; Pei G
    Mol Pharmacol; 1997 Apr; 51(4):583-7. PubMed ID: 9106622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early metabolic inhibition-induced intracellular sodium and calcium increase in rat cerebellar granule cells.
    Chen WH; Chu KC; Wu SJ; Wu JC; Shui HA; Wu ML
    J Physiol; 1999 Feb; 515 ( Pt 1)(Pt 1):133-46. PubMed ID: 9925884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger.
    Stys PK; Waxman SG; Ransom BR
    J Neurosci; 1992 Feb; 12(2):430-9. PubMed ID: 1311030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na(+) dependence and the role of glutamate receptors and Na(+) channels in ion fluxes during hypoxia of rat hippocampal slices.
    Müller M; Somjen GG
    J Neurophysiol; 2000 Oct; 84(4):1869-80. PubMed ID: 11024079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antillatoxin, a novel lipopeptide, enhances neurite outgrowth in immature cerebrocortical neurons through activation of voltage-gated sodium channels.
    Jabba SV; Prakash A; Dravid SM; Gerwick WH; Murray TF
    J Pharmacol Exp Ther; 2010 Mar; 332(3):698-709. PubMed ID: 20026674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMDA receptor-mediated K+ efflux and neuronal apoptosis.
    Yu SP; Yeh C; Strasser U; Tian M; Choi DW
    Science; 1999 Apr; 284(5412):336-9. PubMed ID: 10195902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca2+-independent, but voltage- and activity-dependent regulation of the NMDA receptor outward K+ current in mouse cortical neurons.
    Ichinose T; Yu S; Wang XQ; Yu SP
    J Physiol; 2003 Sep; 551(Pt 2):403-17. PubMed ID: 12860921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypothermia and metabolic stress: narrowing the cellular site of early neuroprotection.
    Zeevalk GD; Nicklas WJ
    J Pharmacol Exp Ther; 1996 Oct; 279(1):332-9. PubMed ID: 8859011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A functional interaction of sodium and calcium in the regulation of NMDA receptor activity by remote NMDA receptors.
    Xin WK; Kwan CL; Zhao XH; Xu J; Ellen RP; McCulloch CA; Yu XM
    J Neurosci; 2005 Jan; 25(1):139-48. PubMed ID: 15634775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory effects of clofilium on membrane currents associated with Ca channels, NMDA receptor channels and Na+, K+-ATPase in cortical neurons.
    Yang A; Wang XQ; Sun CS; Wei L; Yu SP
    Pharmacology; 2005 Mar; 73(3):162-8. PubMed ID: 15637453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Intracellular Sodium in the Regulation of NMDA-Receptor-Mediated Channel Activity and Toxicity.
    Yu XM
    Mol Neurobiol; 2006 Feb; 33(1):63-80. PubMed ID: 16388111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.