These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Selection of Mycobacterium sp. strains with capacity to biotransform high concentrations of beta-sitosterol. Vidal M; Becerra J; Mondaca MA; Silva M Appl Microbiol Biotechnol; 2001 Oct; 57(3):385-9. PubMed ID: 11759690 [TBL] [Abstract][Full Text] [Related]
7. Steroid transformation by mutants of Mycobacterium sp. with altered response to antibiotics. Barthakur S; Roy MK; Bera SK; Ghosh AC J Basic Microbiol; 1996; 36(6):383-7. PubMed ID: 8956488 [TBL] [Abstract][Full Text] [Related]
10. Enhanced biotransformation of sitosterol to androstenedione by Mycobacterium sp. using cell wall permeabilizing antibiotics. Malaviya A; Gomes J J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1235-9. PubMed ID: 18716814 [TBL] [Abstract][Full Text] [Related]
11. Scanning electron microscopy investigations on bis(2-ethylhexyl)phthalate treated Mycobacterium cells. Angelova B; Fernandes P; Spasova D; Mutafov S; Pinheiro HM; Cabral JM Microsc Res Tech; 2006 Aug; 69(8):613-7. PubMed ID: 16729266 [TBL] [Abstract][Full Text] [Related]
12. Immobilization of mycobacterial cells onto silicone--assessing the feasibility of the immobilized biocatalyst in the production of androstenedione from sitosterol. Claudino MJ; Soares D; Van Keulen F; Marques MP; Cabral JM; Fernandes P Bioresour Technol; 2008 May; 99(7):2304-11. PubMed ID: 17596940 [TBL] [Abstract][Full Text] [Related]
13. Selection of Biodegrading Phytosterol Strains. Mondaca MA; Vidal M; Chamorro S; Vidal G Methods Mol Biol; 2017; 1645():143-150. PubMed ID: 28710625 [TBL] [Abstract][Full Text] [Related]
14. Selection and characterization of new microorganisms for the manufacture of 9-OH-AD from sterols. Seidel L; Hörhold C J Basic Microbiol; 1992; 32(1):49-55. PubMed ID: 1527709 [TBL] [Abstract][Full Text] [Related]
15. [Side chain cleavage of sterols by Mycobacterium sp. M12]. Zhang LQ; Bian EP; Wang Y Yao Xue Xue Bao; 1992; 27(12):903-7. PubMed ID: 1299139 [TBL] [Abstract][Full Text] [Related]
16. Biotransformation of androstenedione and androstadienedione by selected Ascomycota and Zygomycota fungal strains. Kollerov V; Shutov A; Kazantsev A; Donova M Phytochemistry; 2020 Jan; 169():112160. PubMed ID: 31600654 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of beta-sitosterol transformation in Mycobacterium vaccae with increased cell wall permeability. Korycka-Machała M; Rumijowska-Galewicz A; Lisowska K; Ziolkowskit A; Sedlacze L Acta Microbiol Pol; 2001; 50(2):107-15. PubMed ID: 11720305 [TBL] [Abstract][Full Text] [Related]
18. Biotransformation of androst-4-ene-3,17-dione and nandrolone decanoate by genera of Aspergillus and Fusarium. Heidary M; Ghasemi S; Habibi Z; Ansari F Biotechnol Lett; 2020 Sep; 42(9):1767-1775. PubMed ID: 32358727 [TBL] [Abstract][Full Text] [Related]
19. Bioconversion of sitosterol to useful steroidal intermediates by mutants of Mycobacterium fortuitum. Wovcha MG; Antosz FJ; Knight JC; Kominek LA; Pyke TR Biochim Biophys Acta; 1978 Dec; 531(3):308-21. PubMed ID: 737192 [TBL] [Abstract][Full Text] [Related]
20. Steroid 11-Alpha-Hydroxylation by the Fungi Aspergillus nidulans and Aspergillus ochraceus. Ríos LOL; Luengo JM; Fernández-Cañón JM Methods Mol Biol; 2017; 1645():271-287. PubMed ID: 28710635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]