These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 19189326)

  • 1. Three-dimensional interconnected silica nanotubes templated from hyperbranched nanowires.
    Zhu J; Peng H; Connor ST; Cui Y
    Small; 2009 Apr; 5(4):437-9. PubMed ID: 19189326
    [No Abstract]   [Full Text] [Related]  

  • 2. SiO(2)/Ta(2)O(5) core-shell nanowires and nanotubes.
    Chueh YL; Chou LJ; Wang ZL
    Angew Chem Int Ed Engl; 2006 Nov; 45(46):7773-8. PubMed ID: 17054294
    [No Abstract]   [Full Text] [Related]  

  • 3. Nanotubes connected to a micro-tank: hybrid micro-/nano-silica architectures transcribed from living bacteria as bioreactors.
    Wang F; Mao C
    Chem Commun (Camb); 2009 Mar; (10):1222-4. PubMed ID: 19240880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron microscopy study of novel Pt nanowires synthesized in the spaces of silica mesoporous materials.
    Terasaki O; Liu Z; Ohsuna T; Shin HJ; Ryoo R
    Microsc Microanal; 2002 Feb; 8(1):35-9. PubMed ID: 12533202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Building-block-based mosaic cage silica nanotubes for molecular transport and separation.
    El-Safty SA; Shahat A; Warkocki W; Ohnuma M
    Small; 2011 Jan; 7(1):62-5. PubMed ID: 20979244
    [No Abstract]   [Full Text] [Related]  

  • 6. Molecular imprinting at walls of silica nanotubes for TNT recognition.
    Xie C; Liu B; Wang Z; Gao D; Guan G; Zhang Z
    Anal Chem; 2008 Jan; 80(2):437-43. PubMed ID: 18088103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of titania/silica hybrid nanowires containing linear mesocage arrays by evaporation-induced block-copolymer self-assembly and atomic layer deposition.
    Chen X; Knez M; Berger A; Nielsch K; Gösele U; Steinhart M
    Angew Chem Int Ed Engl; 2007; 46(36):6829-32. PubMed ID: 17668904
    [No Abstract]   [Full Text] [Related]  

  • 8. Silicon-silica nanowires, nanotubes, and biaxial nanowires: inside, outside, and side-by-side growth of silicon versus silica on zeolite.
    Teo BK; Li CP; Sun XH; Wong NB; Lee ST
    Inorg Chem; 2003 Oct; 42(21):6723-8. PubMed ID: 14552624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmission electron microscopy in situ fabrication of ZnO/Al2O3 composite nanotubes by electron-beam-irradiation-induced local etching of ZnO/Al2O3 core/shell nanowires.
    Yang Y; Scholz R; Berger A; Kim DS; Knez M; Hesse D; Gösele U; Zacharias M
    Small; 2008 Dec; 4(12):2112-7. PubMed ID: 18989863
    [No Abstract]   [Full Text] [Related]  

  • 10. In situ laser synthesis of Si nanowires in the dynamic TEM.
    Taheri ML; Reed BW; LaGrange TB; Browning ND
    Small; 2008 Dec; 4(12):2187-90. PubMed ID: 19003826
    [No Abstract]   [Full Text] [Related]  

  • 11. Mechanical capping of silica nanotubes for encapsulation of molecules.
    Yu J; Bai X; Suh J; Lee SB; Son SJ
    J Am Chem Soc; 2009 Nov; 131(43):15574-5. PubMed ID: 19824675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystalline nanorods as possible templates for the synthesis of amorphous biosilica during spicule formation in Demospongiae.
    Mugnaioli E; Natalio F; Schlossmacher U; Wang X; Müller WE; Kolb U
    Chembiochem; 2009 Mar; 10(4):683-9. PubMed ID: 19184987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid silica nanotubes with chiral walls.
    Chen Y; Li B; Wu X; Zhu X; Suzuki M; Hanabusa K; Yang Y
    Chem Commun (Camb); 2008 Oct; (40):4948-50. PubMed ID: 18931748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold-enhanced low-temperature oxidation of silicon nanowires.
    Xie T; Schmidt V; Pippel E; Senz S; Gösele U
    Small; 2008 Jan; 4(1):64-8. PubMed ID: 18076010
    [No Abstract]   [Full Text] [Related]  

  • 15. The formation of TiO(2) nanowires directly from nanoparticles.
    Wang CC; Yu CY; Kei CC; Lee CT; Perng TP
    Nanotechnology; 2009 Jul; 20(28):285601. PubMed ID: 19550018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct deposition of size-tunable Au nanoparticles on silicon oxide nanowires.
    Kim JH; An HH; Kim HS; Kim YH; Yoon CS
    J Colloid Interface Sci; 2009 Sep; 337(1):289-93. PubMed ID: 19477456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iodide ions control galvanic replacement growth of uniform rhodium nanotubes at room temperature.
    Bi Y; Lu G
    Chem Commun (Camb); 2008 Dec; (47):6402-4. PubMed ID: 19048169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterned growth of silicon oxide nanowires from iron ion implanted SiO2 substrates.
    Choi Y; Johnson JL; Ural A
    Nanotechnology; 2009 Apr; 20(13):135307. PubMed ID: 19420498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of collagen nanotubes with highly regular dimensions through membrane-templated layer-by-layer assembly.
    Landoulsi J; Roy CJ; Dupont-Gillain C; Demoustier-Champagne S
    Biomacromolecules; 2009 May; 10(5):1021-4. PubMed ID: 19371025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale fabrication of free-standing, micropatterned silica nanotubes via a hybrid hydrogel-templated route.
    Chen S; Shi X; Chinnathambi S; Hanagata N
    Adv Healthc Mater; 2013 Aug; 2(8):1091-5. PubMed ID: 23386331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.