These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 19189386)
1. Surface modification of PCL-TCP scaffolds improve interfacial mechanical interlock and enhance early bone formation: an in vitro and in vivo characterization. Yeo A; Wong WJ; Khoo HH; Teoh SH J Biomed Mater Res A; 2010 Jan; 92(1):311-21. PubMed ID: 19189386 [TBL] [Abstract][Full Text] [Related]
2. Surface modification of PCL-TCP scaffolds in rabbit calvaria defects: Evaluation of scaffold degradation profile, biomechanical properties and bone healing patterns. Yeo A; Wong WJ; Teoh SH J Biomed Mater Res A; 2010 Jun; 93(4):1358-67. PubMed ID: 19911382 [TBL] [Abstract][Full Text] [Related]
3. Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds. Roohani-Esfahani SI; Dunstan CR; Davies B; Pearce S; Williams R; Zreiqat H Acta Biomater; 2012 Nov; 8(11):4162-72. PubMed ID: 22842031 [TBL] [Abstract][Full Text] [Related]
4. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration. Thadavirul N; Pavasant P; Supaphol P J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106 [TBL] [Abstract][Full Text] [Related]
5. Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds. Rai B; Lin JL; Lim ZX; Guldberg RE; Hutmacher DW; Cool SM Biomaterials; 2010 Nov; 31(31):7960-70. PubMed ID: 20688388 [TBL] [Abstract][Full Text] [Related]
6. Mastoid obliteration using three-dimensional composite scaffolds consisting of polycaprolactone/β-tricalcium phosphate/collagen nanofibers: an in vitro and in vivo study. Jang CH; Cho YB; Yeo MG; Kim GH Macromol Biosci; 2013 May; 13(5):660-8. PubMed ID: 23512910 [TBL] [Abstract][Full Text] [Related]
7. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935 [TBL] [Abstract][Full Text] [Related]
8. Effect of oxygen plasma etching on pore size-controlled 3D polycaprolactone scaffolds for enhancing the early new bone formation in rabbit calvaria. Kook MS; Roh HS; Kim BH Dent Mater J; 2018 Jul; 37(4):599-610. PubMed ID: 29731489 [TBL] [Abstract][Full Text] [Related]
9. Customizing the degradation and load-bearing profile of 3D polycaprolactone-tricalcium phosphate scaffolds under enzymatic and hydrolytic conditions. Yeo A; Sju E; Rai B; Teoh SH J Biomed Mater Res B Appl Biomater; 2008 Nov; 87(2):562-9. PubMed ID: 18546198 [TBL] [Abstract][Full Text] [Related]
10. Lateral ridge augmentation using a PCL-TCP scaffold in a clinically relevant but challenging micropig model. Yeo A; Cheok C; Teoh SH; Zhang ZY; Buser D; Bosshardt DD Clin Oral Implants Res; 2012 Dec; 23(12):1322-32. PubMed ID: 22145939 [TBL] [Abstract][Full Text] [Related]
11. In vitro and in vivo evaluations of 3D porous TCP-coated and non-coated alumina scaffolds. Kim YH; Anirban JM; Song HY; Seo HS; Lee BT J Biomater Appl; 2011 Feb; 25(6):539-58. PubMed ID: 20207781 [TBL] [Abstract][Full Text] [Related]
12. Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration. Gandolfi MG; Zamparini F; Degli Esposti M; Chiellini F; Fava F; Fabbri P; Taddei P; Prati C Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():341-361. PubMed ID: 31147007 [TBL] [Abstract][Full Text] [Related]
13. Effects of scaffold architecture on cranial bone healing. Berner A; Woodruff MA; Lam CX; Arafat MT; Saifzadeh S; Steck R; Ren J; Nerlich M; Ekaputra AK; Gibson I; Hutmacher DW Int J Oral Maxillofac Surg; 2014 Apr; 43(4):506-13. PubMed ID: 24183512 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of solid free-form fabrication-based scaffolds seeded with osteoblasts and human umbilical vein endothelial cells for use in vivo osteogenesis. Kim JY; Jin GZ; Park IS; Kim JN; Chun SY; Park EK; Kim SY; Yoo J; Kim SH; Rhie JW; Cho DW Tissue Eng Part A; 2010 Jul; 16(7):2229-36. PubMed ID: 20163199 [TBL] [Abstract][Full Text] [Related]
15. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Cao H; Kuboyama N Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045 [TBL] [Abstract][Full Text] [Related]
16. Biomineral coating increases bone formation by ex vivo BMP-7 gene therapy in rapid prototyped poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL) porous scaffolds. Saito E; Suarez-Gonzalez D; Murphy WL; Hollister SJ Adv Healthc Mater; 2015 Mar; 4(4):621-32. PubMed ID: 25515846 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensionally printed polycaprolactone and β-tricalcium phosphate scaffolds for bone tissue engineering: an in vitro study. Sharaf B; Faris CB; Abukawa H; Susarla SM; Vacanti JP; Kaban LB; Troulis MJ J Oral Maxillofac Surg; 2012 Mar; 70(3):647-56. PubMed ID: 22079064 [TBL] [Abstract][Full Text] [Related]
18. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [TBL] [Abstract][Full Text] [Related]
19. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098 [TBL] [Abstract][Full Text] [Related]
20. In Vitro and In Vivo Study of a Novel Nanoscale Demineralized Bone Matrix Coated PCL/β-TCP Scaffold for Bone Regeneration. Yuan B; Wang Z; Zhao Y; Tang Y; Zhou S; Sun Y; Chen X Macromol Biosci; 2021 Mar; 21(3):e2000336. PubMed ID: 33346401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]