These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19190785)

  • 1. Isotropically etched radial micropore for cell concentration, immobilization, and picodroplet generation.
    Perroud TD; Meagher RJ; Kanouff MP; Renzi RF; Wu M; Singh AK; Patel KD
    Lab Chip; 2009 Feb; 9(4):507-15. PubMed ID: 19190785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallelized edge-based droplet generation (EDGE) devices.
    van Dijke K; Veldhuis G; Schroën K; Boom R
    Lab Chip; 2009 Oct; 9(19):2824-30. PubMed ID: 19967120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microtubule transport, concentration and alignment in enclosed microfluidic channels.
    Huang YM; Uppalapati M; Hancock WO; Jackson TN
    Biomed Microdevices; 2007 Apr; 9(2):175-84. PubMed ID: 17195111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure generation at the junction of two microchannels with different depths.
    Yanagisawa N; Dutta D
    Electrophoresis; 2010 Jun; 31(12):2080-8. PubMed ID: 20503204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics.
    Yamada M; Seki M
    Lab Chip; 2005 Nov; 5(11):1233-9. PubMed ID: 16234946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmotically driven flows in microchannels separated by a semipermeable membrane.
    Jensen KH; Lee J; Bohr T; Bruus H
    Lab Chip; 2009 Jul; 9(14):2093-9. PubMed ID: 19568680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic manipulator for enrichment and alignment of moving cells and particles.
    Chen HH; Sun B; Tran KK; Shen H; Gao D
    J Biomech Eng; 2009 Jul; 131(7):074505. PubMed ID: 19640141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes.
    Luo X; Berlin DL; Betz J; Payne GF; Bentley WE; Rubloff GW
    Lab Chip; 2010 Jan; 10(1):59-65. PubMed ID: 20024051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic droplet generator based on a piezoelectric actuator.
    Bransky A; Korin N; Khoury M; Levenberg S
    Lab Chip; 2009 Feb; 9(4):516-20. PubMed ID: 19190786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of complex concentration profiles in microchannels in a logarithmically small number of steps.
    Campbell K; Groisman A
    Lab Chip; 2007 Feb; 7(2):264-72. PubMed ID: 17268630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles.
    Nisisako T; Torii T
    Lab Chip; 2008 Feb; 8(2):287-93. PubMed ID: 18231668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteria concentration using a membrane type insulator-based dielectrophoresis in a plastic chip.
    Cho YK; Kim S; Lee K; Park C; Lee JG; Ko C
    Electrophoresis; 2009 Sep; 30(18):3153-9. PubMed ID: 19722215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of channel position on sample confinement in two-dimensional planar microfluidic devices.
    Lerch MA; Hoffman MD; Jacobson SC
    Lab Chip; 2008 Feb; 8(2):316-22. PubMed ID: 18231672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs).
    Lanigan PM; Ninkovic T; Chan K; de Mello AJ; Willison KR; Klug DR; Templer RH; Neil MA; Ces O
    Lab Chip; 2009 Apr; 9(8):1096-101. PubMed ID: 19350091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Picoliter-volume aqueous droplets in oil: electrochemical detection and yeast cell electroporation.
    Luo C; Yang X; Fu Q; Sun M; Ouyang Q; Chen Y; Ji H
    Electrophoresis; 2006 May; 27(10):1977-83. PubMed ID: 16596709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.
    Wu Z; Willing B; Bjerketorp J; Jansson JK; Hjort K
    Lab Chip; 2009 May; 9(9):1193-9. PubMed ID: 19370236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force.
    Zhang K; Liang Q; Ma S; Mu X; Hu P; Wang Y; Luo G
    Lab Chip; 2009 Oct; 9(20):2992-9. PubMed ID: 19789755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple, robust storage of drops and fluids in a microfluidic device.
    Boukellal H; Selimović S; Jia Y; Cristobal G; Fraden S
    Lab Chip; 2009 Jan; 9(2):331-8. PubMed ID: 19107293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.