These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19190789)

  • 1. Parallel multi-time point cell stimulation and lysis on-chip for studying early signaling events in T cell activation.
    Hirsch AM; Rivet CA; Zhang B; Kemp ML; Lu H
    Lab Chip; 2009 Feb; 9(4):536-44. PubMed ID: 19190789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automated programmable platform enabling multiplex dynamic stimuli delivery and cellular response monitoring for high-throughput suspension single-cell signaling studies.
    He L; Kniss A; San-Miguel A; Rouse T; Kemp ML; Lu H
    Lab Chip; 2015 Mar; 15(6):1497-507. PubMed ID: 25609410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell stimulus and lysis in a microfluidic device with segmented gas-liquid flow.
    El-Ali J; Gaudet S; Günther A; Sorger PK; Jensen KF
    Anal Chem; 2005 Jun; 77(11):3629-36. PubMed ID: 15924398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T cell activation on a single-cell level in dielectrophoresis-based microfluidic devices.
    Kirschbaum M; Jaeger MS; Schenkel T; Breinig T; Meyerhans A; Duschl C
    J Chromatogr A; 2008 Aug; 1202(1):83-9. PubMed ID: 18619604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal analysis of protozoan lysis in a microfluidic device.
    Santillo MF; Heien ML; Ewing AG
    Lab Chip; 2009 Oct; 9(19):2796-802. PubMed ID: 19967116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-line cell lysis and DNA extraction on a microfluidic biochip fabricated by microelectromechanical system technology.
    Chen X; Cui DF; Liu CC
    Electrophoresis; 2008 May; 29(9):1844-51. PubMed ID: 18393339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip sample preparation for complete blood count from raw blood.
    Nguyen J; Wei Y; Zheng Y; Wang C; Sun Y
    Lab Chip; 2015 Mar; 15(6):1533-44. PubMed ID: 25631744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics study of intracellular calcium response to mechanical stimulation on single suspension cells.
    Xu T; Yue W; Li CW; Yao X; Yang M
    Lab Chip; 2013 Mar; 13(6):1060-9. PubMed ID: 23403699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated microfluidic cell culture and lysis on a chip.
    Nevill JT; Cooper R; Dueck M; Breslauer DN; Lee LP
    Lab Chip; 2007 Dec; 7(12):1689-95. PubMed ID: 18030388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical and experimental characterization of a novel modular passive micromixer.
    Pennella F; Rossi M; Ripandelli S; Rasponi M; Mastrangelo F; Deriu MA; Ridolfi L; Kähler CJ; Morbiducci U
    Biomed Microdevices; 2012 Oct; 14(5):849-62. PubMed ID: 22711456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Microfluidic drifting"--implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device.
    Mao X; Waldeisen JR; Huang TJ
    Lab Chip; 2007 Oct; 7(10):1260-2. PubMed ID: 17896008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlating short-term Ca(2+) responses with long-term protein expression after activation of single T cells.
    Kirschbaum M; Jaeger MS; Duschl C
    Lab Chip; 2009 Dec; 9(24):3517-25. PubMed ID: 20024031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameters influencing pulsed flow mixing in microchannels.
    Glasgow I; Lieber S; Aubry N
    Anal Chem; 2004 Aug; 76(16):4825-32. PubMed ID: 15307794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upgrading well plates using open microfluidic patterning.
    Berry SB; Zhang T; Day JH; Su X; Wilson IZ; Berthier E; Theberge AB
    Lab Chip; 2017 Dec; 17(24):4253-4264. PubMed ID: 29164190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation and experimentation of a microfluidic device based on electrowetting on dielectric.
    Jang LS; Lin GH; Lin YL; Hsu CY; Kan WH; Chen CH
    Biomed Microdevices; 2007 Dec; 9(6):777-86. PubMed ID: 17520369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Proximity Ligation Assay for Profiling Signaling Networks with Single-Cell Resolution.
    Blazek M; Roth G; Zengerle R; Meier M
    Methods Mol Biol; 2015; 1346():169-84. PubMed ID: 26542722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using a microfluidic device for high-content analysis of cell signaling.
    Cheong R; Wang CJ; Levchenko A
    Sci Signal; 2009 Jun; 2(75):pl2. PubMed ID: 19531802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-controlled hydrodynamic focusing to generate multiple overlapping gradients of surface-immobilized proteins in microfluidic devices.
    Georgescu W; Jourquin J; Estrada L; Anderson AR; Quaranta V; Wikswo JP
    Lab Chip; 2008 Feb; 8(2):238-44. PubMed ID: 18231661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sample flow switching techniques on microfluidic chips.
    Pan YJ; Lin JJ; Luo WJ; Yang RJ
    Biosens Bioelectron; 2006 Feb; 21(8):1644-8. PubMed ID: 16112854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.