BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 19190994)

  • 1. QSAR modelling of carcinogenicity by balance of correlations.
    Toropov AA; Toropova AP; Benfenati E; Manganaro A
    Mol Divers; 2009 Aug; 13(3):367-73. PubMed ID: 19190994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SMILES-based optimal descriptors: QSAR modeling of carcinogenicity by balance of correlations with ideal slopes.
    Toropov AA; Toropova AP; Benfenati E
    Eur J Med Chem; 2010 Sep; 45(9):3581-7. PubMed ID: 20570021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CORAL: QSAR models for carcinogenicity of organic compounds for male and female rats.
    Toropova AP; Toropov AA
    Comput Biol Chem; 2018 Feb; 72():26-32. PubMed ID: 29310001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additive SMILES-based carcinogenicity models: Probabilistic principles in the search for robust predictions.
    Toropov AA; Toropova AP; Benfenati E
    Int J Mol Sci; 2009 Jul; 10(7):3106-3127. PubMed ID: 19742127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSPR modeling bioconcentration factor (BCF) by balance of correlations.
    Toropov AA; Toropova AP; Benfenati E
    Eur J Med Chem; 2009 Jun; 44(6):2544-51. PubMed ID: 19232785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSAR modeling of acute toxicity by balance of correlations.
    Toropov AA; Rasulev BF; Leszczynski J
    Bioorg Med Chem; 2008 Jun; 16(11):5999-6008. PubMed ID: 18482841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QSAR-modeling of toxicity of organometallic compounds by means of the balance of correlations for InChI-based optimal descriptors.
    Toropov AA; Toropova AP; Benfenati E
    Mol Divers; 2010 Feb; 14(1):183-92. PubMed ID: 19452257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSAR study for carcinogenicity in a large set of organic compounds.
    Duchowicz PR; Comelli NC; Ortiz EV; Castro EA
    Curr Drug Saf; 2012 Sep; 7(4):282-8. PubMed ID: 23062240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First report on development of quantitative interspecies structure-carcinogenicity relationship models and exploring discriminatory features for rodent carcinogenicity of diverse organic chemicals using OECD guidelines.
    Kar S; Roy K
    Chemosphere; 2012 Apr; 87(4):339-55. PubMed ID: 22225702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SMILES-based optimal descriptors: QSAR analysis of fullerene-based HIV-1 PR inhibitors by means of balance of correlations.
    Toropov AA; Toropova AP; Benfenati E; Leszczynska D; Leszczynski J
    J Comput Chem; 2010 Jan; 31(2):381-92. PubMed ID: 19479738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices.
    Contrera JF; Matthews EJ; Daniel Benz R
    Regul Toxicol Pharmacol; 2003 Dec; 38(3):243-59. PubMed ID: 14623477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of QSAR models for predicting hepatocarcinogenic toxicity of chemicals.
    Massarelli I; Imbriani M; Coi A; Saraceno M; Carli N; Bianucci AM
    Eur J Med Chem; 2009 Sep; 44(9):3658-64. PubMed ID: 19272677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo-based quantitative structure-activity relationship models for toxicity of organic chemicals to Daphnia magna.
    Toropova AP; Toropov AA; Veselinović AM; Veselinović JB; Leszczynska D; Leszczynski J
    Environ Toxicol Chem; 2016 Nov; 35(11):2691-2697. PubMed ID: 27110865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative structure carcinogenicity relationship for detecting structural alerts in nitroso-compounds: species: rat; sex: male; route of administration: water.
    Helguera AM; Cordeiro MN; Pérez MA; Combes RD; González MP
    Toxicol Appl Pharmacol; 2008 Sep; 231(2):197-207. PubMed ID: 18533217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristic substructures and properties in chemical carcinogens studied by the cascade model.
    Okada T
    Bioinformatics; 2003 Jul; 19(10):1208-15. PubMed ID: 12835263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel naïve Bayes classification models for predicting the carcinogenicity of chemicals.
    Zhang H; Cao ZX; Li M; Li YZ; Peng C
    Food Chem Toxicol; 2016 Nov; 97():141-149. PubMed ID: 27597133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of criteria used to access carcinogenicity in CPANN QSAR models versus the knowledge-based expert system Toxtree.
    Fjodorova N; Novič M
    SAR QSAR Environ Res; 2014; 25(6):423-41. PubMed ID: 24716754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Monte Carlo technique as a tool to predict LOAEL.
    Veselinović JB; Veselinović AM; Toropova AP; Toropov AA
    Eur J Med Chem; 2016 Jun; 116():71-75. PubMed ID: 27060758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Putting the Predictive Toxicology Challenge into perspective: reflections on the results.
    Benigni R; Giuliani A
    Bioinformatics; 2003 Jul; 19(10):1194-200. PubMed ID: 12835261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.