BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19191248)

  • 1. Particle-based synthesis of peptide arrays.
    Breitling F; Felgenhauer T; Nesterov A; Lindenstruth V; Stadler V; Bischoff FR
    Chembiochem; 2009 Mar; 10(5):803-8. PubMed ID: 19191248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide arrays with a chip.
    Nesterov A; Dörsam E; Cheng YC; Schirwitz C; Märkle F; Löffler F; König K; Stadler V; Bischoff R; Breitling F
    Methods Mol Biol; 2010; 669():109-24. PubMed ID: 20857361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combinatorial synthesis of peptide arrays onto a microchip.
    Beyer M; Nesterov A; Block I; König K; Felgenhauer T; Fernandez S; Leibe K; Torralba G; Hausmann M; Trunk U; Lindenstruth V; Bischoff FR; Stadler V; Breitling F
    Science; 2007 Dec; 318(5858):1888. PubMed ID: 18096799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-density peptide arrays.
    Breitling F; Nesterov A; Stadler V; Felgenhauer T; Bischoff FR
    Mol Biosyst; 2009 Mar; 5(3):224-34. PubMed ID: 19225611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling efficiencies of amino acids in the solid phase synthesis of peptides.
    Young JD; Huang AS; Ariel N; Bruins JB; Ng D; Stevens RL
    Pept Res; 1990; 3(4):194-200. PubMed ID: 2134063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial synthesis of peptide arrays with a laser printer.
    Stadler V; Felgenhauer T; Beyer M; Fernandez S; Leibe K; Güttler S; Gröning M; König K; Torralba G; Hausmann M; Lindenstruth V; Nesterov A; Block I; Pipkorn R; Poustka A; Bischoff FR; Breitling F
    Angew Chem Int Ed Engl; 2008; 47(37):7132-5. PubMed ID: 18671222
    [No Abstract]   [Full Text] [Related]  

  • 7. Peptide libraries: determination of relative reaction rates of protected amino acids in competitive couplings.
    Ostresh JM; Winkle JH; Hamashin VT; Houghten RA
    Biopolymers; 1994 Dec; 34(12):1681-9. PubMed ID: 7849229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A general method for designing combinatorial peptide libraries decodable by amino acid analysis.
    Kofoed J; Reymond JL
    J Comb Chem; 2007; 9(6):1046-52. PubMed ID: 17922554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Problem of aspartimide formation in Fmoc-based solid-phase peptide synthesis using Dmab group to protect side chain of aspartic acid.
    Ruczyński J; Lewandowska B; Mucha P; Rekowski P
    J Pept Sci; 2008 Mar; 14(3):335-41. PubMed ID: 17975850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-phase peptide synthesis using nanoparticulate amino acids in water.
    Hojo K; Ichikawa H; Maeda M; Kida S; Fukumori Y; Kawasaki K
    J Pept Sci; 2007 Jul; 13(7):493-7. PubMed ID: 17554805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the coupling efficiency of phosphorylated amino acids for SPOT synthesis.
    Tapia V; Ay B; Triebus J; Wolter E; Boisguerin P; Volkmer R
    J Pept Sci; 2008 Dec; 14(12):1309-14. PubMed ID: 18816512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-phase synthesis of 1,3-azole-based peptides and peptidomimetics.
    Biron E; Chatterjee J; Kessler H
    Org Lett; 2006 May; 8(11):2417-20. PubMed ID: 16706540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of dicobalthexacarbonyl-alkyne derivatives of amino acids, peptides, and peptide nucleic acid (PNA) monomers.
    Gasser G; Neukamm MA; Ewers A; Brosch O; Weyhermüller T; Metzler-Nolte N
    Inorg Chem; 2009 Apr; 48(7):3157-66. PubMed ID: 19326929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion.
    Hilpert K; Winkler DF; Hancock RE
    Nat Protoc; 2007; 2(6):1333-49. PubMed ID: 17545971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-directed maskless synthesis of peptide arrays using photolabile amino acid monomers.
    Bhushan KR
    Org Biomol Chem; 2006 May; 4(10):1857-9. PubMed ID: 16688328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial peptide synthesis on a microchip.
    Schirwitz C; Block I; König K; Nesterov A; Fernandez S; Felgenhauer T; Leibe K; Torralba G; Hausmann M; Lindenstruth V; Stadler V; Breitling F; Bischoff FR
    Curr Protoc Protein Sci; 2009 Aug; Chapter 18():18.2.1-18.2.13. PubMed ID: 19688736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Online monitoring of solid-phase peptide syntheses on glass-type surfaces using white light interference.
    Haake HM; Tünnemann R; Brecht A; Austel V; Jung G; Gauglitz G
    Anal Biochem; 2002 Jan; 300(2):107-12. PubMed ID: 11779100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-phase peptide synthesis using acetonitrile as a solvent in combination with PEG-based resins.
    Acosta GA; del Fresno M; Paradis-Bas M; Rigau-DeLlobet M; Côté S; Royo M; Albericio F
    J Pept Sci; 2009 Oct; 15(10):629-33. PubMed ID: 19634177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis.
    Palasek SA; Cox ZJ; Collins JM
    J Pept Sci; 2007 Mar; 13(3):143-8. PubMed ID: 17121420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting lipopolyplexes using bifunctional peptides incorporating hydrophobic spacer amino acids: synthesis, transfection, and biophysical studies.
    Pilkington-Miksa MA; Writer MJ; Sarkar S; Meng QH; Barker SE; Shamlou PA; Hailes HC; Hart SL; Tabor AB
    Bioconjug Chem; 2007; 18(6):1800-10. PubMed ID: 17915956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.