These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19191316)

  • 61. Introducing an attractive method for total biomimetic creation of a synthetic biodegradable bioactive bone scaffold based on statistical experimental design.
    Shahbazi S; Zamanian A; Pazouki M; Jafari Y
    Mater Sci Eng C Mater Biol Appl; 2018 May; 86():109-120. PubMed ID: 29525086
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate).
    Payne RG; McGonigle JS; Yaszemski MJ; Yasko AW; Mikos AG
    Biomaterials; 2002 Nov; 23(22):4373-80. PubMed ID: 12219827
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones.
    Liu WC; Robu IS; Patel R; Leu MC; Velez M; Chu TM
    Biomed Mater; 2014 Aug; 9(4):045013. PubMed ID: 25065552
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth.
    Cooke MN; Fisher JP; Dean D; Rimnac C; Mikos AG
    J Biomed Mater Res B Appl Biomater; 2003 Feb; 64(2):65-9. PubMed ID: 12516080
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links.
    Wang K; Cai L; Hao F; Xu X; Cui M; Wang S
    Biomacromolecules; 2010 Oct; 11(10):2748-59. PubMed ID: 20822174
    [TBL] [Abstract][Full Text] [Related]  

  • 66. In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels.
    Shin H; Quinten Ruhé P; Mikos AG; Jansen JA
    Biomaterials; 2003 Aug; 24(19):3201-11. PubMed ID: 12763447
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cross-linking characteristics and mechanical properties of an injectable biomaterial composed of polypropylene fumarate and polycaprolactone co-polymer.
    Yan J; Li J; Runge MB; Dadsetan M; Chen Q; Lu L; Yaszemski MJ
    J Biomater Sci Polym Ed; 2011; 22(4-6):489-504. PubMed ID: 20566042
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds.
    Dadsetan M; Guda T; Runge MB; Mijares D; LeGeros RZ; LeGeros JP; Silliman DT; Lu L; Wenke JC; Brown Baer PR; Yaszemski MJ
    Acta Biomater; 2015 May; 18():9-20. PubMed ID: 25575855
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Studies on biodegradable and crosslinkable poly(castor oil fumarate)/poly(propylene fumarate) composite adhesive as a potential injectable biomaterial.
    Mitha MK; Jayabalan M
    J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S203-11. PubMed ID: 18592346
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Synthesis and characterization of a photo-cross-linked bioactive polycaprolactone-based osteoconductive biocomposite.
    Razazpour F; Najafi F; Moshaverinia A; Fatemi SM; Sima S
    J Biomed Mater Res A; 2021 Oct; 109(10):1858-1868. PubMed ID: 33830598
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Versatility of biodegradable biopolymers: degradability and an in vivo application.
    Hasirci V; Lewandrowski K; Gresser JD; Wise DL; Trantolo DJ
    J Biotechnol; 2001 Mar; 86(2):135-50. PubMed ID: 11245902
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mechanical properties of a biodegradable bone regeneration scaffold.
    Porter BD; Oldham JB; He SL; Zobitz ME; Payne RG; An KN; Currier BL; Mikos AG; Yaszemski MJ
    J Biomech Eng; 2000 Jun; 122(3):286-8. PubMed ID: 10923298
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Digital micromirror device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds.
    Mott EJ; Busso M; Luo X; Dolder C; Wang MO; Fisher JP; Dean D
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():301-11. PubMed ID: 26838854
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Synthesis and Biological Evaluation of Well-Defined Poly(propylene fumarate) Oligomers and Their Use in 3D Printed Scaffolds.
    Luo Y; Dolder CK; Walker JM; Mishra R; Dean D; Becker ML
    Biomacromolecules; 2016 Feb; 17(2):690-7. PubMed ID: 26771388
    [TBL] [Abstract][Full Text] [Related]  

  • 75. In-situ preparation of poly(propylene fumarate)--hydroxyapatite composite.
    Hakimimehr D; Liu DM; Troczynski T
    Biomaterials; 2005 Dec; 26(35):7297-303. PubMed ID: 16026822
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Photoinitiated cross-linking of the biodegradable polyester poly(propylene fumarate). Part I. Determination of network structure.
    Fisher JP; Timmer MD; Holland TA; Dean D; Engel PS; Mikos AG
    Biomacromolecules; 2003; 4(5):1327-34. PubMed ID: 12959602
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Evaluation of thermal- and photo-crosslinked biodegradable poly(propylene fumarate)-based networks.
    Timmer MD; Ambrose CG; Mikos AG
    J Biomed Mater Res A; 2003 Sep; 66(4):811-8. PubMed ID: 12926033
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nanocomposite bone scaffolds based on biodegradable polymers and hydroxyapatite.
    Becker J; Lu L; Runge MB; Zeng H; Yaszemski MJ; Dadsetan M
    J Biomed Mater Res A; 2015 Aug; 103(8):2549-57. PubMed ID: 25504776
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biodegradable fumarate-based polyHIPEs as tissue engineering scaffolds.
    Christenson EM; Soofi W; Holm JL; Cameron NR; Mikos AG
    Biomacromolecules; 2007 Dec; 8(12):3806-14. PubMed ID: 17979240
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Poly(propylene fumarate)/Polyethylene Glycol-Modified Graphene Oxide Nanocomposites for Tissue Engineering.
    Díez-Pascual AM; Díez-Vicente AL
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):17902-14. PubMed ID: 27383639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.