These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19191412)

  • 1. Residue energy and mobility in sequence to global structure and dynamics of a HIV-1 protease (1DIFA) by a coarse-grained Monte Carlo simulation.
    Pandey RB; Farmer BL
    J Chem Phys; 2009 Jan; 130(4):044906. PubMed ID: 19191412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Globular structure of a human immunodeficiency virus-1 protease (1DIFA dimer) in an effective solvent medium by a Monte Carlo simulation.
    Pandey RB; Farmer BL
    J Chem Phys; 2010 Mar; 132(12):125101. PubMed ID: 20370150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformation of a coarse-grained protein chain (an aspartic acid protease) model in effective solvent by a bond-fluctuating Monte Carlo simulation.
    Pandey RB; Farmer BL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031902. PubMed ID: 18517417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational response to solvent interaction and temperature of a protein (Histone h3.1) by a multi-grained monte carlo simulation.
    Pandey RB; Farmer BL
    PLoS One; 2013; 8(10):e76069. PubMed ID: 24204592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxation to native conformation of a bond-fluctuating protein chain with hydrophobic and polar nodes.
    Bjursell J; Pandey RB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):052904. PubMed ID: 15600673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of peptides (A3, Flg, Pd2, Pd4) on gold and palladium surfaces by a coarse-grained Monte Carlo simulation.
    Pandey RB; Heinz H; Feng J; Farmer BL; Slocik JM; Drummy LF; Naik RR
    Phys Chem Chem Phys; 2009 Mar; 11(12):1989-2001. PubMed ID: 19280010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-arrhenius behavior in the unfolding of a short, hydrophobic alpha-helix. Complementarity of molecular dynamics and lattice model simulations.
    Collet O; Chipot C
    J Am Chem Soc; 2003 May; 125(21):6573-80. PubMed ID: 12785798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinction in binding of peptides (P2E) and its mutations (P2G, P2Q) to a graphene sheet via a hierarchical coarse-grained Monte Carlo simulation.
    Pandey RB; Farmer BL
    J Chem Phys; 2013 Oct; 139(16):164901. PubMed ID: 24182073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors governing the foldability of proteins.
    Klimov DK; Thirumalai D
    Proteins; 1996 Dec; 26(4):411-41. PubMed ID: 8990496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flap opening dynamics in HIV-1 protease explored with a coarse-grained model.
    Tozzini V; Trylska J; Chang CE; McCammon JA
    J Struct Biol; 2007 Mar; 157(3):606-15. PubMed ID: 17029846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact pair dynamics during folding of two small proteins: chicken villin head piece and the Alzheimer protein beta-amyloid.
    Mukherjee A; Bagchi B
    J Chem Phys; 2004 Jan; 120(3):1602-12. PubMed ID: 15268287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulation of protein folding in the presence of residue-specific binding sites.
    Rossinsky E; Srebnik S
    Biopolymers; 2005 Dec; 79(5):259-68. PubMed ID: 16134169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme.
    Kolinski A; Skolnick J
    Proteins; 1994 Apr; 18(4):338-52. PubMed ID: 8208726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational transition free energy profiles of an adsorbed, lattice model protein by multicanonical Monte Carlo simulation.
    Castells V; Van Tassel PR
    J Chem Phys; 2005 Feb; 122(8):84707. PubMed ID: 15836077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lattice neural network minimization. Application of neural network optimization for locating the global-minimum conformations of proteins.
    Rabow AA; Scheraga HA
    J Mol Biol; 1993 Aug; 232(4):1157-68. PubMed ID: 8371272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of solvated peptide (EPLQLKM) with a graphene sheet via simulated coarse-grained approach.
    Sheikholeslami S; Pandey RB; Dragneva N; Floriano W; Rubel O; Barr SA; Kuang Z; Berry R; Naik R; Farmer B
    J Chem Phys; 2014 May; 140(20):204901. PubMed ID: 24880319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular origin of constant m-values, denatured state collapse, and residue-dependent transition midpoints in globular proteins.
    O'Brien EP; Brooks BR; Thirumalai D
    Biochemistry; 2009 May; 48(17):3743-54. PubMed ID: 19278261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coarse-grained lattice Monte Carlo simulations with continuous interaction potentials.
    Liu X; Seider WD; Sinno T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026708. PubMed ID: 23005883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is burst hydrophobic collapse necessary for protein folding?
    Gutin AM; Abkevich VI; Shakhnovich EI
    Biochemistry; 1995 Mar; 34(9):3066-76. PubMed ID: 7893719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A coarse-grained model and associated lattice Monte Carlo simulation of the coil-helix transition of a homopolypeptide.
    Chen Y; Zhang Q; Ding J
    J Chem Phys; 2004 Feb; 120(7):3467-74. PubMed ID: 15268504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.