These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 19191435)

  • 1. Fourier-transform resonance shear measurement for studying confined liquids.
    Sakuma H; Kurihara K
    Rev Sci Instrum; 2009 Jan; 80(1):013701. PubMed ID: 19191435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new physical model for resonance shear measurement of confined liquids between solid surfaces.
    Mizukami M; Kurihara K
    Rev Sci Instrum; 2008 Nov; 79(11):113705. PubMed ID: 19045893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear elasticity of fluids at low-frequent shear influence.
    Badmaev BB; Budaev OR; Dembelova TS; Damdinov BB
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1491-4. PubMed ID: 16814342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical model analysis for resonance shear measurement.
    Mizukami M; Hemette S; Kurihara K
    Rev Sci Instrum; 2019 May; 90(5):055110. PubMed ID: 31153292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic properties of nanocrystalline films of semiconducting chalcogenides at liquid/liquid interface.
    Krishnaswamy R; Kalyanikutty KP; Biswas K; Sood AK; Rao CN
    Langmuir; 2009 Sep; 25(18):10954-61. PubMed ID: 19678615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct measurement of the laplace pressure in a very thin liquid film.
    Zhang B; Nakajima A
    J Colloid Interface Sci; 2002 Jan; 245(1):215-8. PubMed ID: 16290353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new tuning fork-based instrument for oscillatory shear rheology of nano-confined liquids.
    Kapoor K; Kanawade V; Shukla V; Patil S
    Rev Sci Instrum; 2013 Feb; 84(2):025101. PubMed ID: 23464245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscosity sensor utilizing a piezoelectric thickness shear sandwich resonator.
    Thalhammer R; Braun S; Devcic-Kuhar B; Groschl M; Trampler F; Benes E; Nowotny H; Kostal P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1331-40. PubMed ID: 18244295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the applicability of high frequency acoustic shear mode biosensing in view of thickness limitations set by the film resonance.
    Wingqvist G; Anderson H; Lennartsson C; Weissbach T; Yantchev V; Spetz AL
    Biosens Bioelectron; 2009 Jul; 24(11):3387-90. PubMed ID: 19447595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of glucose and cellobiose dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate using Fourier transform infrared spectroscopy.
    Kiefer J; Obert K; Fries J; Bösmann A; Wasserscheid P; Leipertz A
    Appl Spectrosc; 2009 Sep; 63(9):1041-9. PubMed ID: 19796487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of laterally heterogeneous slip on the resonance properties of quartz crystals immersed in liquids.
    Du B; Goubaidoulline I; Johannsmann D
    Langmuir; 2004 Nov; 20(24):10617-24. PubMed ID: 15544393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscosity and lubricity of aqueous NaCl solution confined between mica surfaces studied by shear resonance measurement.
    Sakuma H; Otsuki K; Kurihara K
    Phys Rev Lett; 2006 Feb; 96(4):046104. PubMed ID: 16486853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lensless Fourier transform digital holographic interferometer for diffusivity measurement of miscible transparent liquids.
    Sheoran G; Anand A; Shakher C
    Rev Sci Instrum; 2009 May; 80(5):053106. PubMed ID: 19485491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motions and relaxations of confined liquids.
    Granick S
    Science; 1991 Sep; 253(5026):1374-9. PubMed ID: 17793478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal conductivity measurement of fluids using the 3omega method.
    Lee SM
    Rev Sci Instrum; 2009 Feb; 80(2):024901. PubMed ID: 19256671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanotribological Characterization of Lubricants between Smooth Iron Surfaces.
    Kasuya M; Tomita K; Hino M; Mizukami M; Mori H; Kajita S; Ohmori T; Suzuki A; Kurihara K
    Langmuir; 2017 Apr; 33(16):3941-3948. PubMed ID: 28394610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency.
    Xia S; Xu Z; Wei X
    Rev Sci Instrum; 2009 Nov; 80(11):114703. PubMed ID: 19947747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Difference frequency generation spectroscopy as a vibrational optical activity measurement tool.
    Cheon S; Cho M
    J Phys Chem A; 2009 Mar; 113(11):2438-45. PubMed ID: 19228046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-independent analysis of QCM data on colloidal particle adsorption.
    Tellechea E; Johannsmann D; Steinmetz NF; Richter RP; Reviakine I
    Langmuir; 2009 May; 25(9):5177-84. PubMed ID: 19397357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method for vector characterization of polar liquids using frequency-domain spectroscopy.
    Saha SC; Grant JP; Ma Y; Khalid A; Hong F; Cumming DR
    Opt Lett; 2011 Sep; 36(17):3329-31. PubMed ID: 21886200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.