These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19191440)

  • 1. Multihit two-dimensional charged-particle imaging system with real-time image processing at 1000 frames/s.
    Horio T; Suzuki T
    Rev Sci Instrum; 2009 Jan; 80(1):013706. PubMed ID: 19191440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super-resolution photoelectron imaging with real-time subpixelation by field programmable gate array and its application to NO and benzene photoionization.
    Ogi Y; Kohguchi H; Niu D; Ohshimo K; Suzuki T
    J Phys Chem A; 2009 Dec; 113(52):14536-44. PubMed ID: 19817387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time visual sensing system achieving high-speed 3D particle tracking with nanometer resolution.
    Cheng P; Jhiang SM; Menq CH
    Appl Opt; 2013 Nov; 52(31):7530-9. PubMed ID: 24216655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectron kinetic energy dependence in near threshold ionization of NO from A state studied by time-resolved photoelectron imaging.
    Tsubouchi M; Suzuki T
    J Chem Phys; 2004 Nov; 121(18):8846-53. PubMed ID: 15527347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast dynamics of o-bromofluorobenzene studied by time-resolved photoelectron imaging.
    Cao ZZ; Wei ZR; Hua LQ; Hu CJ; Zhang S; Zhang B
    Chemphyschem; 2009 Jun; 10(8):1299-304. PubMed ID: 19343750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coincidence ion imaging with a fast frame camera.
    Lee SK; Cudry F; Lin YF; Lingenfelter S; Winney AH; Fan L; Li W
    Rev Sci Instrum; 2014 Dec; 85(12):123303. PubMed ID: 25554285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time digital signal processing for live electro-optic imaging.
    Sasagawa K; Kanno A; Tsuchiya M
    Opt Express; 2009 Aug; 17(18):15641-51. PubMed ID: 19724563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real time in vivo imaging and measurement of serine protease activity in the mouse hippocampus using a dedicated complementary metal-oxide semiconductor imaging device.
    Ng DC; Tamura H; Tokuda T; Yamamoto A; Matsuo M; Nunoshita M; Ishikawa Y; Shiosaka S; Ohta J
    J Neurosci Methods; 2006 Sep; 156(1-2):23-30. PubMed ID: 16542733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsed illumination, closed circuit television system for real-time viewing of unsteady (> 1 micros) events.
    Marden WW; Steinberger RL; Bracco FV
    Rev Sci Instrum; 1978 Oct; 49(10):1392. PubMed ID: 18698961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [C-MOS flat-panel sensor for real time X-ray imaging].
    Nakagawa K; Aoki Y; Sasaki Y; Akanuma A; Mizuno S
    Nihon Igaku Hoshasen Gakkai Zasshi; 1998 Feb; 58(3):81-5. PubMed ID: 9558848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photon arrival timing with sub-camera exposure time resolution in wide-field time-resolved photon counting imaging.
    Petrášek Z; Suhling K
    Opt Express; 2010 Nov; 18(24):24888-901. PubMed ID: 21164834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A photoelectron-photoion coincidence imaging apparatus for femtosecond time-resolved molecular dynamics with electron time-of-flight resolution of sigma=18 ps and energy resolution Delta E/E=3.5%.
    Vredenborg A; Roeterdink WG; Janssen MH
    Rev Sci Instrum; 2008 Jun; 79(6):063108. PubMed ID: 18601398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid wide-field photon counting imaging with microsecond time resolution.
    Suhling K; Sergent N; Levitt J; Green M
    Opt Express; 2010 Nov; 18(24):25292-8. PubMed ID: 21164877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Operating a triple stack microchannel plate-phosphor assembly for single particle counting in the 12-300 K temperature range.
    Rosén S; Schmidt HT; Reinhed P; Fischer D; Thomas RD; Cederquist H; Liljeby L; Bagge L; Leontein S; Blom M
    Rev Sci Instrum; 2007 Nov; 78(11):113301. PubMed ID: 18052467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization study of an intensified complementary metal-oxide-semiconductor active pixel sensor.
    Griffiths JA; Chen D; Turchetta R; Royle GJ
    Rev Sci Instrum; 2011 Mar; 82(3):033709. PubMed ID: 21456753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and analysis of a photon-counting three-dimensional imaging laser detection and ranging (LADAR) system.
    Oh MS; Kong HJ; Kim TH; Jo SE; Kim BW; Park DJ
    J Opt Soc Am A Opt Image Sci Vis; 2011 May; 28(5):759-65. PubMed ID: 21532685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection systems for mass spectrometry imaging: a perspective on novel developments with a focus on active pixel detectors.
    Jungmann JH; Heeren RM
    Rapid Commun Mass Spectrom; 2013 Jan; 27(1):1-23. PubMed ID: 23239313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging.
    Boppel S; Lisauskas A; Max A; Krozer V; Roskos HG
    Opt Lett; 2012 Feb; 37(4):536-8. PubMed ID: 22344098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New field programmable gate array-based image-oriented acquisition and real-time processing applied to plasma facing component thermal monitoring.
    Martin V; Dunand G; Moncada V; Jouve M; Travere JM
    Rev Sci Instrum; 2010 Oct; 81(10):10E113. PubMed ID: 21033978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.