BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19191440)

  • 1. Multihit two-dimensional charged-particle imaging system with real-time image processing at 1000 frames/s.
    Horio T; Suzuki T
    Rev Sci Instrum; 2009 Jan; 80(1):013706. PubMed ID: 19191440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super-resolution photoelectron imaging with real-time subpixelation by field programmable gate array and its application to NO and benzene photoionization.
    Ogi Y; Kohguchi H; Niu D; Ohshimo K; Suzuki T
    J Phys Chem A; 2009 Dec; 113(52):14536-44. PubMed ID: 19817387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time visual sensing system achieving high-speed 3D particle tracking with nanometer resolution.
    Cheng P; Jhiang SM; Menq CH
    Appl Opt; 2013 Nov; 52(31):7530-9. PubMed ID: 24216655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectron kinetic energy dependence in near threshold ionization of NO from A state studied by time-resolved photoelectron imaging.
    Tsubouchi M; Suzuki T
    J Chem Phys; 2004 Nov; 121(18):8846-53. PubMed ID: 15527347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast dynamics of o-bromofluorobenzene studied by time-resolved photoelectron imaging.
    Cao ZZ; Wei ZR; Hua LQ; Hu CJ; Zhang S; Zhang B
    Chemphyschem; 2009 Jun; 10(8):1299-304. PubMed ID: 19343750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coincidence ion imaging with a fast frame camera.
    Lee SK; Cudry F; Lin YF; Lingenfelter S; Winney AH; Fan L; Li W
    Rev Sci Instrum; 2014 Dec; 85(12):123303. PubMed ID: 25554285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time digital signal processing for live electro-optic imaging.
    Sasagawa K; Kanno A; Tsuchiya M
    Opt Express; 2009 Aug; 17(18):15641-51. PubMed ID: 19724563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real time in vivo imaging and measurement of serine protease activity in the mouse hippocampus using a dedicated complementary metal-oxide semiconductor imaging device.
    Ng DC; Tamura H; Tokuda T; Yamamoto A; Matsuo M; Nunoshita M; Ishikawa Y; Shiosaka S; Ohta J
    J Neurosci Methods; 2006 Sep; 156(1-2):23-30. PubMed ID: 16542733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsed illumination, closed circuit television system for real-time viewing of unsteady (> 1 micros) events.
    Marden WW; Steinberger RL; Bracco FV
    Rev Sci Instrum; 1978 Oct; 49(10):1392. PubMed ID: 18698961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [C-MOS flat-panel sensor for real time X-ray imaging].
    Nakagawa K; Aoki Y; Sasaki Y; Akanuma A; Mizuno S
    Nihon Igaku Hoshasen Gakkai Zasshi; 1998 Feb; 58(3):81-5. PubMed ID: 9558848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photon arrival timing with sub-camera exposure time resolution in wide-field time-resolved photon counting imaging.
    Petrášek Z; Suhling K
    Opt Express; 2010 Nov; 18(24):24888-901. PubMed ID: 21164834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A photoelectron-photoion coincidence imaging apparatus for femtosecond time-resolved molecular dynamics with electron time-of-flight resolution of sigma=18 ps and energy resolution Delta E/E=3.5%.
    Vredenborg A; Roeterdink WG; Janssen MH
    Rev Sci Instrum; 2008 Jun; 79(6):063108. PubMed ID: 18601398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid wide-field photon counting imaging with microsecond time resolution.
    Suhling K; Sergent N; Levitt J; Green M
    Opt Express; 2010 Nov; 18(24):25292-8. PubMed ID: 21164877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Operating a triple stack microchannel plate-phosphor assembly for single particle counting in the 12-300 K temperature range.
    Rosén S; Schmidt HT; Reinhed P; Fischer D; Thomas RD; Cederquist H; Liljeby L; Bagge L; Leontein S; Blom M
    Rev Sci Instrum; 2007 Nov; 78(11):113301. PubMed ID: 18052467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization study of an intensified complementary metal-oxide-semiconductor active pixel sensor.
    Griffiths JA; Chen D; Turchetta R; Royle GJ
    Rev Sci Instrum; 2011 Mar; 82(3):033709. PubMed ID: 21456753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and analysis of a photon-counting three-dimensional imaging laser detection and ranging (LADAR) system.
    Oh MS; Kong HJ; Kim TH; Jo SE; Kim BW; Park DJ
    J Opt Soc Am A Opt Image Sci Vis; 2011 May; 28(5):759-65. PubMed ID: 21532685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection systems for mass spectrometry imaging: a perspective on novel developments with a focus on active pixel detectors.
    Jungmann JH; Heeren RM
    Rapid Commun Mass Spectrom; 2013 Jan; 27(1):1-23. PubMed ID: 23239313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging.
    Boppel S; Lisauskas A; Max A; Krozer V; Roskos HG
    Opt Lett; 2012 Feb; 37(4):536-8. PubMed ID: 22344098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New field programmable gate array-based image-oriented acquisition and real-time processing applied to plasma facing component thermal monitoring.
    Martin V; Dunand G; Moncada V; Jouve M; Travere JM
    Rev Sci Instrum; 2010 Oct; 81(10):10E113. PubMed ID: 21033978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.