BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 1919153)

  • 1. Heating pattern of helical microwave intracavitary oesophageal applicator.
    Liu RL; Zhang EY; Gross EJ; Cetas TC
    Int J Hyperthermia; 1991; 7(4):577-86. PubMed ID: 1919153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of heating patterns of microwave interstitial applicators using miniature electric field and fluoroptic temperature probes.
    Babij TM; Hagmann MJ; Gottlieb CF; Abitbol AA; Lewin AA; Schwade JG; Houdek PV
    Int J Hyperthermia; 1991; 7(3):485-92. PubMed ID: 1919143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia.
    Diederich CJ; Stauffer PR
    Int J Hyperthermia; 1993; 9(2):227-46. PubMed ID: 8468507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large stationary microstrip arrays for superficial microwave hyperthermia at 433 MHz: SAR analysis and clinical data.
    Ryan TP; Backus VL; Coughlin CT
    Int J Hyperthermia; 1995; 11(2):187-209. PubMed ID: 7790734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and thermometry of an intracavitary microwave applicator suitable for treatment of some vaginal and rectal cancers.
    Li DJ; Luk KH; Jiang HB; Chou CK; Hwang GZ
    Int J Radiat Oncol Biol Phys; 1984 Nov; 10(11):2155-62. PubMed ID: 6490441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of microwave hyperthermia applicators.
    Chou CK
    Bioelectromagnetics; 1992; 13(6):581-97. PubMed ID: 1482420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators.
    Surowiec A; Shrivastava PN; Astrahan M; Petrovich Z
    Int J Hyperthermia; 1992; 8(6):795-807. PubMed ID: 1479205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The size and distance of the opposite flat applicator change the SAR and thermal distributions of RF capacitive intracavitary hyperthermia.
    Hiraki Y; Nakajo M; Takeshita T; Churei H
    Int J Hyperthermia; 2000; 16(3):205-18. PubMed ID: 10830584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of intracavitary microwave applicators for the treatment of uterine cervix carcinoma.
    Li DJ; Chou CK; Luk KH; Wang JH; Xie CF; McDougall JA; Huang GZ
    Int J Hyperthermia; 1991; 7(5):693-701. PubMed ID: 1940505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
    Chakaravarthi G; Arunachalam K
    Int J Hyperthermia; 2015; 31(7):737-48. PubMed ID: 26365603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new coaxial TEM radiofrequency/microwave applicator for non-invasive deep-body hyperthermia.
    Lagendijk JJ
    J Microw Power; 1983 Dec; 18(4):367-75. PubMed ID: 6561256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study of a new microwave applicator for hyperthermia treatment of uterocervical cancer].
    Wang W; Ding R; Wang H; Li Y; Lin S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):175-7. PubMed ID: 11951512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Measures of specific absorption rate (SAR) in microwave hyperthermic oncology and the influence of the dynamic bolus on clinical practice].
    Marini P; Guiot C; Baiotto B; Gabriele P
    Radiol Med; 2001 Sep; 102(3):159-67. PubMed ID: 11677459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved applicator-patient coupling in microwave-induced hyperthermia.
    Nussbaum GH; Goodman RA; Bruce AA
    Med Phys; 1983; 10(6):897-8. PubMed ID: 6656702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A variable microwave array attenuator for use with single-element waveguide applicators.
    Sherar MD; Clark H; Cooper B; Kumaradas J; Liu FF
    Int J Hyperthermia; 1994; 10(5):723-31. PubMed ID: 7806927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical characterization of dual concentric conductor microwave applicators for hyperthermia at 433 MHz.
    Rossetto F; Stauffer PR
    Int J Hyperthermia; 2001; 17(3):258-70. PubMed ID: 11347730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific absorption rates in simulated tissue media for a 10 x 10 cm 915-MHz waveguide applicator.
    Denman DL; Kolasa MJ; Elson HR; Aron BS; Kereiakes JG
    Med Phys; 1987; 14(4):681-6. PubMed ID: 3627011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of fat thickness on heating patterns of the microwave applicator MA-151 at 631 and 915 MHz.
    Chou CK; McDougall JA; Chan KW; Luk KH
    Int J Radiat Oncol Biol Phys; 1990 Oct; 19(4):1067-70. PubMed ID: 2211244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equilibrium temperature distributions in uniform phantoms for superficial microwave applicators: implications for temperature-based standards of applicator adequacy.
    Myerson RJ; Emami BN; Perez CA; Straube W; Leybovich L; Von Gerichten D
    Int J Hyperthermia; 1992; 8(1):11-21. PubMed ID: 1545156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental assessment of phased-array heating of neck tumours.
    Gross EJ; Cetas TC; Stauffer PR; Liu RL; Lumori ML
    Int J Hyperthermia; 1990; 6(2):453-74. PubMed ID: 2324581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.