BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 1919154)

  • 1. Analysis and testing of a concentric ring applicator for ultrasound hyperthermia with clinical results.
    Ryan TP; Hartov A; Colacchio TA; Coughlin CT; Stafford JH; Hoopes PJ
    Int J Hyperthermia; 1991; 7(4):587-603. PubMed ID: 1919154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Techniques for intraoperative hyperthermia with ultrasound: the Dartmouth experience with 19 patients.
    Ryan TP; Colacchio TA; Douple EB; Strohbehn JW; Coughlin CT
    Int J Hyperthermia; 1992; 8(4):407-21. PubMed ID: 1402123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and characterization of an intracavitary ultrasound hyperthermia applicator for recurrent or residual lesions in the vaginal cuff.
    Lee RJ; Suh H
    Int J Hyperthermia; 2003; 19(5):563-74. PubMed ID: 12944170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Air-cooling of direct-coupled ultrasound applicators for interstitial hyperthermia and thermal coagulation.
    Deardorff DL; Diederich CJ; Nau WH
    Med Phys; 1998 Dec; 25(12):2400-9. PubMed ID: 9874834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical experience with a multi-element ultrasonic hyperthermia system: analysis of treatment temperatures.
    Samulski TV; Grant WJ; Oleson JR; Leopold KA; Dewhirst MW; Vallario P; Blivin J
    Int J Hyperthermia; 1990; 6(5):909-22. PubMed ID: 2250116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development of intracavitary ultrasonic applicators for hyperthermia: a design and experimental study.
    Diederich CJ; Hynynen K
    Med Phys; 1990; 17(4):626-34. PubMed ID: 2215407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of an adaptive MIMO controller for a multiple-element ultrasound hyperthermia system.
    Hartov A; Colacchio TA; Strohbehn JW; Ryan TP; Hoopes PJ
    Int J Hyperthermia; 1993; 9(4):563-79. PubMed ID: 8366306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.
    Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ
    Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic power calibrations of cylindrical intracavitary ultrasound hyperthermia applicators.
    Hynynen K
    Med Phys; 1993; 20(1):129-34. PubMed ID: 8455491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature distributions during clinical scanned, focused ultrasound hyperthermia treatments.
    Hynynen K; Shimm D; Anhalt D; Stea B; Sykes H; Cassady JR; Roemer RB
    Int J Hyperthermia; 1990; 6(5):891-908. PubMed ID: 2250115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and in vitro results of a high intensity ultrasound interstitial applicator.
    Lafon C; Chapelon JY; Prat F; Gorry F; Theillère Y; Cathignol D
    Ultrasonics; 1998 Feb; 36(1-5):683-7. PubMed ID: 9651597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small cylindrical ultrasound sources for induction of hyperthermia via body cavities or interstitial implants.
    Hynynen K; Davis KL
    Int J Hyperthermia; 1993; 9(2):263-74. PubMed ID: 8468509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aperture size to therapeutic volume relation for a multielement ultrasound system: determination of applicator adequacy for superficial hyperthermia.
    Moros EG; Myerson RJ; Straube WL
    Med Phys; 1993; 20(5):1399-409. PubMed ID: 8289722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applicators for generating ultrasound-induced hyperthermia in neoplastic tumours and for use in ultrasound physiotherapy.
    Quan KM; Shiran M; Watmough DJ
    Phys Med Biol; 1989 Nov; 34(11):1719-31. PubMed ID: 2587630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ultrasound cylindrical phased array for deep heating in the breast: theoretical design using heterogeneous models.
    Bakker JF; Paulides MM; Obdeijn IM; van Rhoon GC; van Dongen KW
    Phys Med Biol; 2009 May; 54(10):3201-15. PubMed ID: 19420416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal therapy of pancreatic tumours using endoluminal ultrasound: Parametric and patient-specific modelling.
    Adams MS; Scott SJ; Salgaonkar VA; Sommer G; Diederich CJ
    Int J Hyperthermia; 2016; 32(2):97-111. PubMed ID: 27097663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transrectal ultrasound applicator for prostate heating monitored using MRI thermometry.
    Smith NB; Buchanan MT; Hynynen K
    Int J Radiat Oncol Biol Phys; 1999 Jan; 43(1):217-25. PubMed ID: 9989529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved coupling of ultrasound hyperthermia applicators to patients.
    Oleson JR; Samulski TV
    Int J Radiat Oncol Biol Phys; 1989 Mar; 16(3):609-12. PubMed ID: 2921162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic phased array controller for hyperthermia applications.
    Benkeser PJ; Pao TL; Yoon YJ
    Ultrasonics; 1991 Jan; 29(1):85-8. PubMed ID: 1990724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the SAR-distribution of the Sigma-60 applicator for regional hyperthermia using a Schottky diode sheet.
    Van Rhoon GC; Van Der Heuvel DJ; Ameziane A; Rietveld PJ; Volenec K; Van Der Zee J
    Int J Hyperthermia; 2003; 19(6):642-54. PubMed ID: 14756453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.