BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 1919157)

  • 1. Effect of chronically induced thermotolerance on thermosensitization in CHO cells.
    Jung H
    Int J Hyperthermia; 1991; 7(4):621-8. PubMed ID: 1919157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of chronic thermotolerance on thermosensitization in Chinese hamster ovary cells studied at various temperatures.
    Dikomey E; Müller C; Jung H
    Int J Hyperthermia; 1991; 7(5):741-8. PubMed ID: 1940509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A generalized concept for cell killing by heat. Effect of acutely induced thermotolerance and decay of thermosensitization.
    Jung H
    Radiat Res; 1994 Sep; 139(3):280-9. PubMed ID: 8073110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of thermotolerance and step-down heating on thermal radiosensitization in CHO cells.
    Dikomey E; Jung H
    Int J Radiat Biol; 1992 Feb; 61(2):235-42. PubMed ID: 1351911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A generalized concept for cell killing by heat. Effect of chronically induced thermotolerance.
    Jung H
    Radiat Res; 1991 Sep; 127(3):235-42. PubMed ID: 1886977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermosensitization, heat shock protein synthesis and development of thermotolerance in M-14 human tumor cells subjected to step-down heating.
    Delpino A; Gentile FP; Di Modugno F; Benassi M; Mileo AM; Mattei E
    Radiat Environ Biophys; 1992; 31(4):323-32. PubMed ID: 1438681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermotolerance and thermosensitization in CHO and R1H cells: a comparative study.
    Dikomey E; Eickhoff J; Jung H
    Int J Radiat Biol Relat Stud Phys Chem Med; 1984 Aug; 46(2):181-92. PubMed ID: 6332092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in thermotolerance induced by heat or sodium arsenite: cell killing and inhibition of protein synthesis.
    Lee YJ; Perlaky L; Dewey WC; Armour EP; Corry PM
    Radiat Res; 1990 Mar; 121(3):295-303. PubMed ID: 2179980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of oxidative stress induced by cysteamine upon the induction and development of thermotolerance in Chinese hamster ovary cells.
    Issels RD; Bourier S; Böning B; Li GC; Mak JJ; Wilmanns W
    Cancer Res; 1987 May; 47(9):2268-74. PubMed ID: 3567920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of thermotolerance in CHO cells: modification by procaine.
    Rastogi D; Henle KJ; Nagle WA; Moss AJ; Neilan BA; Rastogi SP
    Int J Hyperthermia; 1987; 3(1):63-70. PubMed ID: 3559299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiosensitivity and thermosensitization of thermotolerant Chinese hamster cells and RIF-1 tumors.
    Hartson-Eaton M; Malcolm AW; Hahn GM
    Radiat Res; 1984 Jul; 99(1):175-84. PubMed ID: 6739722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between the kinetics of thermotolerance and effect of cis-diamminedichloroplatinum(II) or bleomycin given at 37 or 43 degrees C.
    Majima H; Kashiwado K; Egawa S; Suzuki N; Urano M
    Int J Hyperthermia; 1992; 8(4):431-42. PubMed ID: 1383358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in thermosensitization among cloned cell lines isolated from a single human melanoma xenograft.
    Rofstad EK; Brustad T
    Radiat Res; 1986 May; 106(2):147-55. PubMed ID: 3704108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermotolerance induced by heat, sodium arsenite, or puromycin: its inhibition and differences between 43 degrees C and 45 degrees C.
    Lee YJ; Dewey WC
    J Cell Physiol; 1988 Jun; 135(3):397-406. PubMed ID: 3294234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of step-down and step-up heating on the development of thermotolerance in a C3H mammary carcinoma in vivo.
    Lindegaard JC; Nielsen OS; Overgaard J
    Int J Hyperthermia; 1995; 11(2):231-9. PubMed ID: 7790737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH on development and decay of thermotolerance in CHO cells using fractionated heating at 43 degrees C.
    Dikomey E; Eickhoff J; Jung H
    Int J Hyperthermia; 1988; 4(5):555-65. PubMed ID: 3392427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-temperature relationships for L1A2 cells step-down heated from 38 to 45 degrees C in vitro.
    Lindegaard JC; Nielsen OS
    Radiat Res; 1990 Mar; 121(3):282-7. PubMed ID: 2315446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: effects of pH and thermal tolerance.
    Holahan EV; Highfield DP; Holahan PK; Dewey WC
    Radiat Res; 1984 Jan; 97(1):108-31. PubMed ID: 6695037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular mechanisms associated with the lack of chronic thermotolerance expression in HeLa S3 cells.
    Mackey MA; Anolik SL; Roti Roti JL
    Cancer Res; 1992 Mar; 52(5):1101-6. PubMed ID: 1737369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure to pretreatment hypothermia as a determinant of heat killing.
    Herman TS; Henle KJ; Nagle WA; Moss AJ; Monson TP
    Radiat Res; 1984 May; 98(2):345-53. PubMed ID: 6729042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.