These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 19191973)
1. Biological control of grey mould in strawberry fruits by halophilic bacteria. Essghaier B; Fardeau ML; Cayol JL; Hajlaoui MR; Boudabous A; Jijakli H; Sadfi-Zouaoui N J Appl Microbiol; 2009 Mar; 106(3):833-46. PubMed ID: 19191973 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry. Alizadeh HR; Sharifi-Tehrani A; Hedjaroude GA Commun Agric Appl Biol Sci; 2007; 72(4):795-800. PubMed ID: 18396812 [TBL] [Abstract][Full Text] [Related]
3. Bombus terrestris as pollinator-and-vector to suppress Botrytis cinerea in greenhouse strawberry. Mommaerts V; Put K; Smagghe G Pest Manag Sci; 2011 Sep; 67(9):1069-75. PubMed ID: 21394887 [TBL] [Abstract][Full Text] [Related]
4. Selection of antagonists of postharvest apple parasites: Penicillium expansum and Botrytis cinerea. Achbani EH; Mounir R; Jaafari S; Douira A; Benbouazza ; Jijakli MH Commun Agric Appl Biol Sci; 2005; 70(3):143-9. PubMed ID: 16637169 [TBL] [Abstract][Full Text] [Related]
5. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. Touré Y; Ongena M; Jacques P; Guiro A; Thonart P J Appl Microbiol; 2004; 96(5):1151-60. PubMed ID: 15078533 [TBL] [Abstract][Full Text] [Related]
6. Culturable halophilic bacteria inhabiting Algerian saline ecosystems: A source of promising features and potentialities. Menasria T; Monteoliva-Sánchez M; Benammar L; Benhadj M; Ayachi A; Hacène H; Gonzalez-Paredes A; Aguilera M World J Microbiol Biotechnol; 2019 Aug; 35(9):132. PubMed ID: 31432260 [TBL] [Abstract][Full Text] [Related]
7. Botrytis infection warnings in strawberry: reduced enhanced chemical control. Van Laer S; Hauke K; Meesters P; Creemers P Commun Agric Appl Biol Sci; 2005; 70(3):61-71. PubMed ID: 16637160 [TBL] [Abstract][Full Text] [Related]
8. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. Kim JH; Lee SH; Kim CS; Lim EK; Choi KH; Kong HG; Kim DW; Lee SW; Moon BJ J Microbiol Biotechnol; 2007 Mar; 17(3):438-44. PubMed ID: 18050947 [TBL] [Abstract][Full Text] [Related]
9. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Petrasch S; Knapp SJ; van Kan JAL; Blanco-Ulate B Mol Plant Pathol; 2019 Jun; 20(6):877-892. PubMed ID: 30945788 [TBL] [Abstract][Full Text] [Related]
10. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Huang R; Li GQ; Zhang J; Yang L; Che HJ; Jiang DH; Huang HC Phytopathology; 2011 Jul; 101(7):859-69. PubMed ID: 21323467 [TBL] [Abstract][Full Text] [Related]
11. Control of postharvest pear diseases using Rhodotorula glutinis and its effects on postharvest quality parameters. Zhang H; Wang L; Dong Y; Jiang S; Zhang H; Zheng X Int J Food Microbiol; 2008 Aug; 126(1-2):167-71. PubMed ID: 18579245 [TBL] [Abstract][Full Text] [Related]
12. Genome sequencing and traits analysis of Burkholderia strains reveal a promising biocontrol effect against grey mould disease in grapevine (Vitis vinifera L.). Esmaeel Q; Jacquard C; Clément C; Sanchez L; Ait Barka E World J Microbiol Biotechnol; 2019 Feb; 35(3):40. PubMed ID: 30739227 [TBL] [Abstract][Full Text] [Related]
13. Selection of bacterial antagonists for the biological control of Botrytis cinerea in apple (Malus domestica) and in comparison with application of thiabendazole. Peighami-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K Commun Agric Appl Biol Sci; 2009; 74(3):739-43. PubMed ID: 20222558 [TBL] [Abstract][Full Text] [Related]
14. Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L. Moura GGD; Barros AV; Machado F; Martins AD; Silva CMD; Durango LGC; Forim M; Alves E; Pasqual M; Doria J Microbiol Res; 2021 Oct; 251():126793. PubMed ID: 34325193 [TBL] [Abstract][Full Text] [Related]
15. Brazilian isolates of Clonostachys rosea: colonization under different temperature and moisture conditions and temporal dynamics on strawberry leaves. Cota LV; Maffia LA; Mizubuti ES Lett Appl Microbiol; 2008 Mar; 46(3):312-7. PubMed ID: 18179592 [TBL] [Abstract][Full Text] [Related]
16. Selection and application of antifungal VOCs-producing yeasts as biocontrol agents of grey mould in fruits. Ruiz-Moyano S; Hernández A; Galvan AI; Córdoba MG; Casquete R; Serradilla MJ; Martín A Food Microbiol; 2020 Dec; 92():103556. PubMed ID: 32950150 [TBL] [Abstract][Full Text] [Related]
17. Potential of bulb-associated bacteria for biocontrol of hyacinth soft rot caused by Dickeya zeae. Jafra S; Przysowa J; Gwizdek-Wiśniewska A; van der Wolf JM J Appl Microbiol; 2009 Jan; 106(1):268-77. PubMed ID: 19054227 [TBL] [Abstract][Full Text] [Related]
18. Biological control of grey mould (Botrytis cinerea) with the antagonist Ulocladium atrum. Metz C; Oerke EC; Dehne HW Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):353-9. PubMed ID: 12701443 [TBL] [Abstract][Full Text] [Related]
19. Interaction of media on production and biocontrol efficacy of Pseudomonas fluorescens and Bacillus subtilis against grey mould of apple. Peighamy-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K Commun Agric Appl Biol Sci; 2008; 73(2):249-55. PubMed ID: 19226761 [TBL] [Abstract][Full Text] [Related]
20. Antifungal lactic acid bacteria with potential to prolong shelf-life of fresh vegetables. Sathe SJ; Nawani NN; Dhakephalkar PK; Kapadnis BP J Appl Microbiol; 2007 Dec; 103(6):2622-8. PubMed ID: 17850302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]