These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

600 related articles for article (PubMed ID: 19192191)

  • 1. Biofortification of crops with seven mineral elements often lacking in human diets--iron, zinc, copper, calcium, magnesium, selenium and iodine.
    White PJ; Broadley MR
    New Phytol; 2009; 182(1):49-84. PubMed ID: 19192191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical evaluation of strategies for mineral fortification of staple food crops.
    Gómez-Galera S; Rojas E; Sudhakar D; Zhu C; Pelacho AM; Capell T; Christou P
    Transgenic Res; 2010 Apr; 19(2):165-80. PubMed ID: 19685153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofortifying crops with essential mineral elements.
    White PJ; Broadley MR
    Trends Plant Sci; 2005 Dec; 10(12):586-93. PubMed ID: 16271501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mineral Biofortification of Vegetables as a Tool to Improve Human Diet.
    Buturi CV; Mauro RP; Fogliano V; Leonardi C; Giuffrida F
    Foods; 2021 Jan; 10(2):. PubMed ID: 33494459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofortification-A Frontier Novel Approach to Enrich Micronutrients in Field Crops to Encounter the Nutritional Security.
    Dhaliwal SS; Sharma V; Shukla AK; Verma V; Kaur M; Shivay YS; Nisar S; Gaber A; Brestic M; Barek V; Skalicky M; Ondrisik P; Hossain A
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc Biofortification in Food Crops Could Alleviate the Zinc Malnutrition in Human Health.
    Praharaj S; Skalicky M; Maitra S; Bhadra P; Shankar T; Brestic M; Hejnak V; Vachova P; Hossain A
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34207649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting genotypic variation in plant nutrient accumulation to alleviate micronutrient deficiency in populations.
    Genc Y; Humphries JM; Lyons GH; Graham RD
    J Trace Elem Med Biol; 2005; 18(4):319-24. PubMed ID: 16028493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds.
    de Figueiredo MA; Boldrin PF; Hart JJ; de Andrade MJB; Guilherme LRG; Glahn RP; Li L
    Plant Physiol Biochem; 2017 Feb; 111():193-202. PubMed ID: 27940270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability.
    Gonzali S; Kiferle C; Perata P
    Curr Opin Biotechnol; 2017 Apr; 44():16-26. PubMed ID: 27835794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron Biofortification of Staple Crops: Lessons and Challenges in Plant Genetics.
    Connorton JM; Balk J
    Plant Cell Physiol; 2019 Jul; 60(7):1447-1456. PubMed ID: 31058958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant Nutrition for Human Nutrition: Hints from Rice Research and Future Perspectives.
    Huang S; Wang P; Yamaji N; Ma JF
    Mol Plant; 2020 Jun; 13(6):825-835. PubMed ID: 32434072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eats roots and leaves. Can edible horticultural crops address dietary calcium, magnesium and potassium deficiencies?
    Broadley MR; White PJ
    Proc Nutr Soc; 2010 Nov; 69(4):601-12. PubMed ID: 20509990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soil type influences crop mineral composition in Malawi.
    Joy EJ; Broadley MR; Young SD; Black CR; Chilimba AD; Ander EL; Barlow TS; Watts MJ
    Sci Total Environ; 2015 Feb; 505():587-95. PubMed ID: 25461061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing Mineral and Vitamin Deficiencies through Biofortification: Progress Under HarvestPlus.
    Bouis H
    World Rev Nutr Diet; 2018; 118():112-122. PubMed ID: 29656297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors influencing micronutrient bioavailability in biofortified crops.
    Bechoff A; Dhuique-Mayer C
    Ann N Y Acad Sci; 2017 Feb; 1390(1):74-87. PubMed ID: 28009050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetically Modified Plants: Nutritious, Sustainable, yet Underrated.
    Hirschi KD
    J Nutr; 2020 Oct; 150(10):2628-2634. PubMed ID: 32725215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofortification revisited: Addressing the role of beneficial soil microbes for enhancing trace elements concentration in staple crops.
    Mishra P; Mishra J; Arora NK
    Microbiol Res; 2023 Oct; 275():127442. PubMed ID: 37437425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc biofortification of cereals-role of phosphorus and other impediments in alkaline calcareous soils.
    Akhtar M; Yousaf S; Sarwar N; Hussain S
    Environ Geochem Health; 2019 Oct; 41(5):2365-2379. PubMed ID: 30903431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological limits to zinc biofortification of edible crops.
    White PJ; Broadley MR
    Front Plant Sci; 2011; 2():80. PubMed ID: 22645552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fertilizer produced from abattoir waste can contribute to phosphorus sustainability, and biofortify crops with minerals.
    Darch T; Dunn RM; Guy A; Hawkins JMB; Ash M; Frimpong KA; Blackwell MSA
    PLoS One; 2019; 14(9):e0221647. PubMed ID: 31483806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.