These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 19192356)

  • 21. Nucleobase-templated polymerization: copying the chain length and polydispersity of living polymers into conjugated polymers.
    Lo PK; Sleiman HF
    J Am Chem Soc; 2009 Apr; 131(12):4182-3. PubMed ID: 19275231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Semi-interpenetrating chitosan/ionic liquid polymer networks as electro-responsive biomaterials for potential wound dressings and iontophoretic applications.
    Kanaan AF; Piedade AP; de Sousa HC; Dias AMA
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111798. PubMed ID: 33579445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single conical nanopores displaying pH-tunable rectifying characteristics. manipulating ionic transport with zwitterionic polymer brushes.
    Yameen B; Ali M; Neumann R; Ensinger W; Knoll W; Azzaroni O
    J Am Chem Soc; 2009 Feb; 131(6):2070-1. PubMed ID: 19159287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel poly(HEMA-co-METAC)/alginate semi-interpenetrating hydrogels for biomedical applications: synthesis and characterization.
    La Gatta A; Schiraldi C; Esposito A; D'Agostino A; De Rosa A
    J Biomed Mater Res A; 2009 Jul; 90(1):292-302. PubMed ID: 18508339
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of wheat-protein-based biomaterials through polymer grafting and crosslinking reactions to introduce new functional properties.
    Kurniawan L; Qiao GG; Zhang X
    Macromol Biosci; 2009 Jan; 9(1):93-101. PubMed ID: 18763260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation, properties and controlled release behaviors of pH-induced thermosensitive amphiphilic gels.
    Liu YY; Shao YH; Lü J
    Biomaterials; 2006 Jul; 27(21):4016-24. PubMed ID: 16563494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Well-defined protein-polymer conjugates--synthesis and potential applications.
    Thordarson P; Le Droumaguet B; Velonia K
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):243-54. PubMed ID: 17061132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials.
    Chan AW; Neufeld RJ
    Biomaterials; 2009 Oct; 30(30):6119-29. PubMed ID: 19660810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tracking chemical processing pathways in combinatorial polymer libraries via data mining.
    Broderick SR; Nowers JR; Narasimhan B; Rajan K
    J Comb Chem; 2010 Mar; 12(2):270-7. PubMed ID: 20030378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical modification of wheat-protein-based natural polymers: formation of polymer networks with alkoxysilanes to modify molecular motions and enhance the material performance.
    Zhang X; Do MD; Bilyk A
    Biomacromolecules; 2007 Jun; 8(6):1881-9. PubMed ID: 17511502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Internal structure of polyelectrolyte multilayer assemblies.
    V Klitzing R
    Phys Chem Chem Phys; 2006 Nov; 8(43):5012-33. PubMed ID: 17091152
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fine-tuning the surface functionality of aqueous luminescent nanocrystals through surfactant bilayer modification.
    Zhang H; Liu Y; Zhang J; Sun H; Wu J; Yang B
    Langmuir; 2008 Nov; 24(22):12730-3. PubMed ID: 18947209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Double emulsion templated microcapsules with single hollow cavities and thickness-controllable shells.
    Gao F; Su ZG; Wang P; Ma GH
    Langmuir; 2009 Apr; 25(6):3832-8. PubMed ID: 19227987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interpenetrating polymeric network (IPNs) in ophthalmic drug delivery: Breaking the barriers.
    Rathod S
    Int Ophthalmol; 2023 Mar; 43(3):1063-1074. PubMed ID: 36053474
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From hydrocolloids to high specific surface area porous supports for catalysis.
    Valentin R; Molvinger K; Viton C; Domard A; Quignard F
    Biomacromolecules; 2005; 6(5):2785-92. PubMed ID: 16153119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanobiotechnological approach to engineered biomaterial design: the example of elastin-like polymers.
    Rodríguez-Cabello JC; Prieto S; Arias FJ; Reguera J; Ribeiro A
    Nanomedicine (Lond); 2006 Oct; 1(3):267-80. PubMed ID: 17716158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Semi-IPN- and IPN-Based Hydrogels.
    Zoratto N; Matricardi P
    Adv Exp Med Biol; 2018; 1059():155-188. PubMed ID: 29736573
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and characterization of biodegradable peptide-based polymers prepared by microwave-assisted click chemistry.
    van Dijk M; Nollet ML; Weijers P; Dechesne AC; van Nostrum CF; Hennink WE; Rijkers DT; Liskamp RM
    Biomacromolecules; 2008 Oct; 9(10):2834-43. PubMed ID: 18817441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The potential of hydrogels as synthetic articular cartilage.
    Corkhill PH; Trevett AS; Tighe BJ
    Proc Inst Mech Eng H; 1990; 204(3):147-55. PubMed ID: 2133781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradable 'intelligent' materials in response to chemical stimuli for biomedical applications.
    Ju XJ; Xie R; Yang L; Chu LY
    Expert Opin Ther Pat; 2009 May; 19(5):683-96. PubMed ID: 19441941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.