These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 19192774)
41. Bioelectrochemical systems: an outlook for practical applications. Sleutels TH; Ter Heijne A; Buisman CJ; Hamelers HV ChemSusChem; 2012 Jun; 5(6):1012-9. PubMed ID: 22674691 [TBL] [Abstract][Full Text] [Related]
42. Attenuation of trace organic compounds (TOrCs) in bioelectrochemical systems. Werner CM; Hoppe-Jones C; Saikaly PE; Logan BE; Amy GL Water Res; 2015 Apr; 73():56-67. PubMed ID: 25644628 [TBL] [Abstract][Full Text] [Related]
43. Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC). Thygesen A; Marzorati M; Boon N; Thomsen AB; Verstraete W Appl Microbiol Biotechnol; 2011 Feb; 89(3):855-65. PubMed ID: 21191786 [TBL] [Abstract][Full Text] [Related]
44. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors. Zhang Y; Angelidaki I Water Res; 2012 May; 46(8):2727-36. PubMed ID: 22402271 [TBL] [Abstract][Full Text] [Related]
46. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions. Rago L; Baeza JA; Guisasola A Bioelectrochemistry; 2016 Jun; 109():57-62. PubMed ID: 26855359 [TBL] [Abstract][Full Text] [Related]
47. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell. Chookaew T; Prasertsan P; Ren ZJ N Biotechnol; 2014 Mar; 31(2):179-84. PubMed ID: 24380781 [TBL] [Abstract][Full Text] [Related]
48. Microbial electrolysis: a promising approach for treatment and resource recovery from industrial wastewater. Koul Y; Devda V; Varjani S; Guo W; Ngo HH; Taherzadeh MJ; Chang JS; Wong JWC; Bilal M; Kim SH; Bui XT; Parra-Saldívar R Bioengineered; 2022 Apr; 13(4):8115-8134. PubMed ID: 35297316 [TBL] [Abstract][Full Text] [Related]
49. Impact of volatile fatty acids on microbial electrolysis cell performance. Yang N; Hafez H; Nakhla G Bioresour Technol; 2015 Oct; 193():449-55. PubMed ID: 26159302 [TBL] [Abstract][Full Text] [Related]
50. Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system. Ajayi FF; Kim KY; Chae KJ; Choi MJ; Chang IS; Kim IS Photochem Photobiol Sci; 2010 Mar; 9(3):349-56. PubMed ID: 20221461 [TBL] [Abstract][Full Text] [Related]
51. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions. Luo X; Nam JY; Zhang F; Zhang X; Liang P; Huang X; Logan BE Bioresour Technol; 2013 Jul; 140():399-405. PubMed ID: 23711946 [TBL] [Abstract][Full Text] [Related]
52. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
53. Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells. Juang DF; Yang PC; Chou HY; Chiu LJ Biotechnol Lett; 2011 Nov; 33(11):2147-60. PubMed ID: 21750995 [TBL] [Abstract][Full Text] [Related]
54. Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis in microbial electrolysis cells (MECs). Cheng S; Logan BE Water Sci Technol; 2008; 58(4):853-7. PubMed ID: 18776621 [TBL] [Abstract][Full Text] [Related]
56. Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions. Zhang J; Zhang Y; Quan X; Chen S; Afzal S Bioresour Technol; 2013 May; 136():273-80. PubMed ID: 23567691 [TBL] [Abstract][Full Text] [Related]
57. Performance of a continuous flow microbial electrolysis cell (MEC) fed with domestic wastewater. Escapa A; Gil-Carrera L; García V; Morán A Bioresour Technol; 2012 Aug; 117():55-62. PubMed ID: 22609714 [TBL] [Abstract][Full Text] [Related]
58. Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens. Geelhoed JS; Stams AJ Environ Sci Technol; 2011 Jan; 45(2):815-20. PubMed ID: 21158443 [TBL] [Abstract][Full Text] [Related]
59. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Luo H; Jenkins PE; Ren Z Environ Sci Technol; 2011 Jan; 45(1):340-4. PubMed ID: 21121677 [TBL] [Abstract][Full Text] [Related]
60. Suppression of methanogenesis for hydrogen production in single-chamber microbial electrolysis cells using various antibiotics. Catal T; Lesnik KL; Liu H Bioresour Technol; 2015; 187():77-83. PubMed ID: 25841185 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]