BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19192798)

  • 21. Seasonal cycles of secondary organic aerosol tracers in rural Guangzhou, Southern China: The importance of atmospheric oxidants.
    Yuan Q; Lai S; Song J; Ding X; Zheng L; Wang X; Zhao Y; Zheng J; Yue D; Zhong L; Niu X; Zhang Y
    Environ Pollut; 2018 Sep; 240():884-893. PubMed ID: 29793196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Variation in the sensitivity of predicted levels of atmospheric organic particulate matter (OPM).
    Pankow JF; Chang EI
    Environ Sci Technol; 2008 Oct; 42(19):7321-9. PubMed ID: 18939565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicted secondary organic aerosol concentrations from the oxidation of isoprene in the eastern United States.
    Lane TE; Pandis SN
    Environ Sci Technol; 2007 Jun; 41(11):3984-90. PubMed ID: 17612179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Secondary organic aerosols over oceans via oxidation of isoprene and monoterpenes from Arctic to Antarctic.
    Hu QH; Xie ZQ; Wang XM; Kang H; He QF; Zhang P
    Sci Rep; 2013; 3():2280. PubMed ID: 23880782
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contributions and source identification of biogenic and anthropogenic hydrocarbons to secondary organic aerosols at Mt. Tai in 2014.
    Zhu Y; Yang L; Kawamura K; Chen J; Ono K; Wang X; Xue L; Wang W
    Environ Pollut; 2017 Jan; 220(Pt B):863-872. PubMed ID: 27823860
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurements of secondary organic aerosol formed from OH-initiated photo-oxidation of isoprene using online photoionization aerosol mass spectrometry.
    Fang W; Gong L; Zhang Q; Cao M; Li Y; Sheng L
    Environ Sci Technol; 2012 Apr; 46(7):3898-904. PubMed ID: 22397593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impacts of Siberian biomass burning on organic aerosols over the North Pacific Ocean and the Arctic: primary and secondary organic tracers.
    Ding X; Wang X; Xie Z; Zhang Z; Sun L
    Environ Sci Technol; 2013 Apr; 47(7):3149-57. PubMed ID: 23441622
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study of Secondary Organic Aerosol Formation from Chlorine Radical-Initiated Oxidation of Volatile Organic Compounds in a Polluted Atmosphere Using a 3D Chemical Transport Model.
    Choi MS; Qiu X; Zhang J; Wang S; Li X; Sun Y; Chen J; Ying Q
    Environ Sci Technol; 2020 Nov; 54(21):13409-13418. PubMed ID: 33074656
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization and quantification of isoprene-derived epoxydiols in ambient aerosol in the southeastern United States.
    Chan MN; Surratt JD; Claeys M; Edgerton ES; Tanner RL; Shaw SL; Zheng M; Knipping EM; Eddingsaas NC; Wennberg PO; Seinfeld JH
    Environ Sci Technol; 2010 Jun; 44(12):4590-6. PubMed ID: 20476767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling the formation of secondary organic aerosol (SOA). 2. The predicted effects of relative humidity on aerosol formation in the alpha-pinene-, beta-pinene-, sabinene-, delta 3-carene-, and cyclohexene-ozone systems.
    Seinfeld JH; Erdakos GB; Asher WE; Pankow JF
    Environ Sci Technol; 2001 May; 35(9):1806-17. PubMed ID: 11355196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A biogenic volatile organic compounds emission inventory for Yunnan Province.
    Wang ZH; Bai YH; Zhang SY
    J Environ Sci (China); 2005; 17(3):353-9. PubMed ID: 16083102
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Source apportionment of secondary organic aerosol in China using a regional source-oriented chemical transport model and two emission inventories.
    Wang P; Ying Q; Zhang H; Hu J; Lin Y; Mao H
    Environ Pollut; 2018 Jun; 237():756-766. PubMed ID: 29128244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. To what extent can biogenic SOA be controlled?
    Carlton AG; Pinder RW; Bhave PV; Pouliot GA
    Environ Sci Technol; 2010 May; 44(9):3376-80. PubMed ID: 20387864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Model representation of secondary organic aerosol in CMAQv4.7.
    Carlton AG; Bhave PV; Napelenok SL; Edney EO; Sarwar G; Pinder RW; Pouliot GA; Houyoux M
    Environ Sci Technol; 2010 Nov; 44(22):8553-60. PubMed ID: 20883028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling the molecular composition of secondary organic aerosol under highly polluted conditions: A case study in the Yangtze River Delta Region in China.
    Huang Q; Lu H; Li J; Ying Q; Gao Y; Wang H; Guo S; Lu K; Qin M; Hu J
    Sci Total Environ; 2024 Aug; 938():173327. PubMed ID: 38761930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drought Impacts on Secondary Organic Aerosol: A Case Study in the Southeast United States.
    Zhao Z; Wang Y; Qin M; Hu Y; Xie Y; Russell AG
    Environ Sci Technol; 2019 Jan; 53(1):242-250. PubMed ID: 30500208
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isoprene, monoterpene, and sesquiterpene oxidation products in the high Arctic aerosols during late winter to early summer.
    Fu P; Kawamura K; Chen J; Barrie LA
    Environ Sci Technol; 2009 Jun; 43(11):4022-8. PubMed ID: 19569325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SOA formation by biogenic and carbonyl compounds: data evaluation and application.
    Ervens B; Kreidenweis SM
    Environ Sci Technol; 2007 Jun; 41(11):3904-10. PubMed ID: 17612167
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organosulfate formation in biogenic secondary organic aerosol.
    Surratt JD; Gómez-González Y; Chan AW; Vermeylen R; Shahgholi M; Kleindienst TE; Edney EO; Offenberg JH; Lewandowski M; Jaoui M; Maenhaut W; Claeys M; Flagan RC; Seinfeld JH
    J Phys Chem A; 2008 Sep; 112(36):8345-78. PubMed ID: 18710205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An SOA model for toluene oxidation in the presence of inorganic aerosols.
    Cao G; Jang M
    Environ Sci Technol; 2010 Jan; 44(2):727-33. PubMed ID: 20017537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.