These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 19192813)
21. Reductive Removal of Selenate in Water Using Stabilized Zero-Valent Iron Nanoparticles. Liu H; Cai Z; Zhao X; Zhao D; Qian T; Bozack M; Zhang M Water Environ Res; 2016 Aug; 88(8):694-703. PubMed ID: 27456140 [TBL] [Abstract][Full Text] [Related]
22. Formulation design for target delivery of iron nanoparticles to TCE zones. Wang Z; Acosta E J Contam Hydrol; 2013 Dec; 155():9-19. PubMed ID: 24096200 [TBL] [Abstract][Full Text] [Related]
23. Antimicrobial effects of zero-valent iron nanoparticles on gram-positive Bacillus strains and gram-negative Escherichia coli strains. Hsueh YH; Tsai PH; Lin KS; Ke WJ; Chiang CL J Nanobiotechnology; 2017 Nov; 15(1):77. PubMed ID: 29100510 [TBL] [Abstract][Full Text] [Related]
24. Impact of membrane immobilization on particle formation and trichloroethylene dechlorination for bimetallic Fe/Ni nanoparticles in cellulose acetate membranes. Meyer DE; Bhattacharyya D J Phys Chem B; 2007 Jun; 111(25):7142-54. PubMed ID: 17530798 [TBL] [Abstract][Full Text] [Related]
25. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. He F; Zhao D; Paul C Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501 [TBL] [Abstract][Full Text] [Related]
26. Transport of nano zero-valent iron supported by mesoporous silica microspheres in porous media. Yang Z; Qiu X; Fang Z; Pokeung T Water Sci Technol; 2015; 71(12):1800-5. PubMed ID: 26067499 [TBL] [Abstract][Full Text] [Related]
27. Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles. Wang Q; Qian H; Yang Y; Zhang Z; Naman C; Xu X J Contam Hydrol; 2010 May; 114(1-4):35-42. PubMed ID: 20304518 [TBL] [Abstract][Full Text] [Related]
28. Kinetics of zero valent iron nanoparticle oxidation in oxygenated water. Greenlee LF; Torrey JD; Amaro RL; Shaw JM Environ Sci Technol; 2012 Dec; 46(23):12913-20. PubMed ID: 23130994 [TBL] [Abstract][Full Text] [Related]
29. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014). Guan X; Sun Y; Qin H; Li J; Lo IM; He D; Dong H Water Res; 2015 May; 75():224-48. PubMed ID: 25770444 [TBL] [Abstract][Full Text] [Related]
30. Relative roles of H-atom transfer and electron transfer in the debromination of polybrominated diphenyl ethers by palladized nanoscale zerovalent iron. Wang R; Lu G; Lin H; Huang K; Tang T; Xue X; Yang X; Yin H; Dang Z Environ Pollut; 2017 Mar; 222():331-337. PubMed ID: 28034557 [TBL] [Abstract][Full Text] [Related]
31. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Machado S; Pacheco JG; Nouws HP; Albergaria JT; Delerue-Matos C Sci Total Environ; 2015 Nov; 533():76-81. PubMed ID: 26151651 [TBL] [Abstract][Full Text] [Related]
32. Facile Synthesis and Characterization of Fe/FeS Nanoparticles for Environmental Applications. Kim EJ; Kim JH; Azad AM; Chang YS ACS Appl Mater Interfaces; 2011 May; 3(5):1457-62. PubMed ID: 21520939 [TBL] [Abstract][Full Text] [Related]
33. Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe Phenrat T; Schoenfelder D; Kirschling TL; Tilton RD; Lowry GV Environ Sci Pollut Res Int; 2018 Mar; 25(8):7157-7169. PubMed ID: 26233743 [TBL] [Abstract][Full Text] [Related]
34. Reactivity characteristics of nanoscale zerovalent iron--silica composites for trichloroethylene remediation. Zheng T; Zhan J; He J; Day C; Lu Y; McPherson GL; Piringer G; John VT Environ Sci Technol; 2008 Jun; 42(12):4494-9. PubMed ID: 18605576 [TBL] [Abstract][Full Text] [Related]
35. Remediation and phytotoxicity of decabromodiphenyl ether contaminated soil by zero valent iron nanoparticles immobilized in mesoporous silica microspheres. Xie Y; Cheng W; Tsang PE; Fang Z J Environ Manage; 2016 Jan; 166():478-83. PubMed ID: 26560640 [TBL] [Abstract][Full Text] [Related]
36. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron. Rajajayavel SR; Ghoshal S Water Res; 2015 Jul; 78():144-53. PubMed ID: 25935369 [TBL] [Abstract][Full Text] [Related]
37. Surfactant-enhanced PEG-4000-NZVI for remediating trichloroethylene-contaminated soil. Tian H; Liang Y; Zhu T; Zeng X; Sun Y Chemosphere; 2018 Mar; 195():585-593. PubMed ID: 29287269 [TBL] [Abstract][Full Text] [Related]
38. Assessment of potential positive effects of nZVI surface modification and concentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design. Kaifas D; Malleret L; Kumar N; Fétimi W; Claeys-Bruno M; Sergent M; Doumenq P Sci Total Environ; 2014 May; 481():335-42. PubMed ID: 24607397 [TBL] [Abstract][Full Text] [Related]
39. Regeneration of iron for trichloroethylene reduction by Shewanella alga BrY. Shin HY; Singhal N; Park JW Chemosphere; 2007 Jun; 68(6):1129-34. PubMed ID: 17349671 [TBL] [Abstract][Full Text] [Related]
40. Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate. Krajangpan S; Bermudez JJ; Bezbaruah AN; Chisholm BJ; Khan E Water Sci Technol; 2008; 58(11):2215-22. PubMed ID: 19092199 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]