BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 19192949)

  • 1. Gene regulatory network interactions in sea urchin endomesoderm induction.
    Sethi AJ; Angerer RC; Angerer LM
    PLoS Biol; 2009 Feb; 7(2):e1000029. PubMed ID: 19192949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of pmar1 controls specification of micromeres in the sea urchin embryo.
    Oliveri P; Davidson EH; McClay DR
    Dev Biol; 2003 Jun; 258(1):32-43. PubMed ID: 12781680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A regulatory gene network that directs micromere specification in the sea urchin embryo.
    Oliveri P; Carrick DM; Davidson EH
    Dev Biol; 2002 Jun; 246(1):209-28. PubMed ID: 12027443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres.
    Revilla-i-Domingo R; Minokawa T; Davidson EH
    Dev Biol; 2004 Oct; 274(2):438-51. PubMed ID: 15385170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LvGroucho and nuclear beta-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo.
    Range RC; Venuti JM; McClay DR
    Dev Biol; 2005 Mar; 279(1):252-67. PubMed ID: 15708573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wnt6 activates endoderm in the sea urchin gene regulatory network.
    Croce J; Range R; Wu SY; Miranda E; Lhomond G; Peng JC; Lepage T; McClay DR
    Development; 2011 Aug; 138(15):3297-306. PubMed ID: 21750039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks.
    Amore G; Yavrouian RG; Peterson KJ; Ransick A; McClay DR; Davidson EH
    Dev Biol; 2003 Sep; 261(1):55-81. PubMed ID: 12941621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micromeres are required for normal vegetal plate specification in sea urchin embryos.
    Ransick A; Davidson EH
    Development; 1995 Oct; 121(10):3215-22. PubMed ID: 7588056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos.
    Ishizuka Y; Minokawa T; Amemiya S
    Dev Genes Evol; 2001 Feb; 211(2):83-8. PubMed ID: 11455418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo.
    McClay DR; Peterson RE; Range RC; Winter-Vann AM; Ferkowicz MJ
    Development; 2000 Dec; 127(23):5113-22. PubMed ID: 11060237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential signaling crosstalk regulates endomesoderm segregation in sea urchin embryos.
    Sethi AJ; Wikramanayake RM; Angerer RC; Range RC; Angerer LM
    Science; 2012 Feb; 335(6068):590-3. PubMed ID: 22301319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo.
    Yamazaki A; Kawabata R; Shiomi K; Amemiya S; Sawaguchi M; Mitsunaga-Nakatsubo K; Yamaguchi M
    Dev Genes Evol; 2005 Sep; 215(9):450-59. PubMed ID: 16078091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres.
    Iijima M; Ishizuka Y; Nakajima Y; Amemiya S; Minokawa T
    Dev Genes Evol; 2009 May; 219(5):235-47. PubMed ID: 19437036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Snail repressor is required for PMC ingression in the sea urchin embryo.
    Wu SY; McClay DR
    Development; 2007 Mar; 134(6):1061-70. PubMed ID: 17287249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulative deployment of the skeletogenic gene regulatory network during sea urchin development.
    Sharma T; Ettensohn CA
    Development; 2011 Jun; 138(12):2581-90. PubMed ID: 21610034
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Yamazaki A; Morino Y; Urata M; Yamaguchi M; Minokawa T; Furukawa R; Kondo M; Wada H
    Development; 2020 Feb; 147(4):. PubMed ID: 32001441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids.
    Erkenbrack EM; Davidson EH; Peter IS
    Development; 2018 Dec; 145(24):. PubMed ID: 30470703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo.
    Wu SY; Yang YP; McClay DR
    Dev Biol; 2008 Jul; 319(2):406-15. PubMed ID: 18495103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.