These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
437 related articles for article (PubMed ID: 19192969)
1. Metabolomic studies on geographical grapes and their wines using 1H NMR analysis coupled with multivariate statistics. Son HS; Hwang GS; Kim KM; Ahn HJ; Park WM; Van Den Berg F; Hong YS; Lee CH J Agric Food Chem; 2009 Feb; 57(4):1481-90. PubMed ID: 19192969 [TBL] [Abstract][Full Text] [Related]
2. 1H nuclear magnetic resonance-based metabolomic characterization of wines by grape varieties and production areas. Son HS; Kim KM; van den Berg F; Hwang GS; Park WM; Lee CH; Hong YS J Agric Food Chem; 2008 Sep; 56(17):8007-16. PubMed ID: 18707121 [TBL] [Abstract][Full Text] [Related]
3. Evidence of vintage effects on grape wines using 1H NMR-based metabolomic study. Lee JE; Hwang GS; Van Den Berg F; Lee CH; Hong YS Anal Chim Acta; 2009 Aug; 648(1):71-6. PubMed ID: 19616691 [TBL] [Abstract][Full Text] [Related]
4. Metabolic influence of Botrytis cinerea infection in champagne base wine. Hong YS; Cilindre C; Liger-Belair G; Jeandet P; Hertkorn N; Schmitt-Kopplin P J Agric Food Chem; 2011 Jul; 59(13):7237-45. PubMed ID: 21604814 [TBL] [Abstract][Full Text] [Related]
5. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera). Jensen JS; Demiray S; Egebo M; Meyer AS J Agric Food Chem; 2008 Feb; 56(3):1105-15. PubMed ID: 18173238 [TBL] [Abstract][Full Text] [Related]
6. The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics. van Dorsten FA; Grün CH; van Velzen EJ; Jacobs DM; Draijer R; van Duynhoven JP Mol Nutr Food Res; 2010 Jul; 54(7):897-908. PubMed ID: 20013882 [TBL] [Abstract][Full Text] [Related]
7. (1)H NMR-based metabolomic approach for understanding the fermentation behaviors of wine yeast strains. Son HS; Hwang GS; Kim KM; Kim EY; van den Berg F; Park WM; Lee CH; Hong YS Anal Chem; 2009 Feb; 81(3):1137-45. PubMed ID: 19115855 [TBL] [Abstract][Full Text] [Related]
8. Phenolic compositions of grapes and wines from cultivar cAbernet Sauvignon produced in Chile and their relationship to commercial value. Cáceres A; Peña-Neira A; Galvez A; Obreque-Slier E; López-Solís R; Canals JM J Agric Food Chem; 2012 Sep; 60(35):8694-702. PubMed ID: 22860632 [TBL] [Abstract][Full Text] [Related]
9. Characterization of fermentative behaviors of lactic acid bacteria in grape wines through 1H NMR- and GC-based metabolic profiling. Lee JE; Hong YS; Lee CH J Agric Food Chem; 2009 Jun; 57(11):4810-7. PubMed ID: 19441818 [TBL] [Abstract][Full Text] [Related]
10. Red-color related phenolic composition of Garnacha Tintorera (Vitis vinifera L.) grapes and red wines. Castillo-Muñoz N; Fernández-González M; Gómez-Alonso S; García-Romero E; Hermosín-Gutiérrez I J Agric Food Chem; 2009 Sep; 57(17):7883-91. PubMed ID: 19673489 [TBL] [Abstract][Full Text] [Related]
11. 1H NMR-based metabonomics for the classification of Greek wines according to variety, region, and vintage. Comparison with HPLC data. Anastasiadi M; Zira A; Magiatis P; Haroutounian SA; Skaltsounis AL; Mikros E J Agric Food Chem; 2009 Dec; 57(23):11067-74. PubMed ID: 19904930 [TBL] [Abstract][Full Text] [Related]
12. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) and wine proanthocyanidins. Cortell JM; Halbleib M; Gallagher AV; Righetti TL; Kennedy JA J Agric Food Chem; 2005 Jul; 53(14):5798-808. PubMed ID: 15998151 [TBL] [Abstract][Full Text] [Related]
13. Smoke-derived taint in wine: effect of postharvest smoke exposure of grapes on the chemical composition and sensory characteristics of wine. Kennison KR; Wilkinson KL; Williams HG; Smith JH; Gibberd MR J Agric Food Chem; 2007 Dec; 55(26):10897-901. PubMed ID: 18052239 [TBL] [Abstract][Full Text] [Related]
14. Partial shading of Cabernet Sauvignon and Shiraz vines altered wine color and mouthfeel attributes, but increased exposure had little impact. Joscelyne VL; Downey MO; Mazza M; Bastian SE J Agric Food Chem; 2007 Dec; 55(26):10888-96. PubMed ID: 18052125 [TBL] [Abstract][Full Text] [Related]
15. Evolution of flavanols, anthocyanins, and their derivatives during the aging of red wines elaborated from grapes harvested at different stages of ripening. Pérez-Magariño S; González-San José ML J Agric Food Chem; 2004 Mar; 52(5):1181-9. PubMed ID: 14995118 [TBL] [Abstract][Full Text] [Related]
16. Proton Nuclear Magnetic Resonance-Spectroscopic Discrimination of Wines Reflects Genetic Homology of Several Different Grape (V. vinifera L.) Cultivars. Hu B; Yue Y; Zhu Y; Wen W; Zhang F; Hardie JW PLoS One; 2015; 10(12):e0142840. PubMed ID: 26658757 [TBL] [Abstract][Full Text] [Related]
17. Effect of red grapes co-winemaking in polyphenols and color of wines. Lorenzo C; Pardo F; Zalacain A; Alonso GL; Salinas MR J Agric Food Chem; 2005 Sep; 53(19):7609-16. PubMed ID: 16159193 [TBL] [Abstract][Full Text] [Related]
18. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) anthocyanins. 2. Anthocyanins and pigmented polymers in wine. Cortell JM; Halbleib M; Gallagher AV; Righetti TL; Kennedy JA J Agric Food Chem; 2007 Aug; 55(16):6585-95. PubMed ID: 17636934 [TBL] [Abstract][Full Text] [Related]
19. Modelling phenolic and technological maturities of grapes by means of the multivariate relation between organoleptic and physicochemical properties. Meléndez E; Ortiz MC; Sarabia LA; Íñiguez M; Puras P Anal Chim Acta; 2013 Jan; 761():53-61. PubMed ID: 23312314 [TBL] [Abstract][Full Text] [Related]
20. Direct method for determining seed and skin proanthocyanidin extraction into red wine. Peyrot des Gachons C; Kennedy JA J Agric Food Chem; 2003 Sep; 51(20):5877-81. PubMed ID: 13129288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]