BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 19193486)

  • 1. Assessment of a new mathematical model for the computation of numerical parameters related to renal cortical blood flow and fractional blood volume by contrast-enhanced ultrasound.
    Quaia E; Nocentini A; Torelli L
    Ultrasound Med Biol; 2009 Apr; 35(4):616-27. PubMed ID: 19193486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Determination of the renal blood flow in macro- and microcirculation by means of pulse inversion imaging].
    Schlosser T; Veltmann C; Lohmaier S; Ehlgen A; Kuntz-Hehner S; Tiemann K; Becher H
    Rofo; 2004 May; 176(5):724-30. PubMed ID: 15122472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative evaluation of microvascular blood flow by contrast-enhanced ultrasound (CEUS).
    Greis C
    Clin Hemorheol Microcirc; 2011; 49(1-4):137-49. PubMed ID: 22214685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal blood flow quantification in pigs using contrast-enhanced ultrasound: an ex vivo study.
    Hoeffel C; Mulé S; Huwart L; Frouin F; Jais JP; Helenon O; Correas JM
    Ultraschall Med; 2010 Aug; 31(4):363-9. PubMed ID: 20408121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood flow quantification with contrast-enhanced US: "entrance in the section" phenomenon--phantom and rabbit study.
    Lucidarme O; Franchi-Abella S; Correas JM; Bridal SL; Kurtisovski E; Berger G
    Radiology; 2003 Aug; 228(2):473-9. PubMed ID: 12802003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of different mathematical models to analyze diminution kinetics of ultrasound contrast enhancement in a flow phantom.
    Meyer-Wiethe K; Cangür H; Seidel GU
    Ultrasound Med Biol; 2005 Jan; 31(1):93-8. PubMed ID: 15653235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasound evaluation of valsartan therapy for renal cortical perfusion.
    Kishimoto N; Mori Y; Nishiue T; Nose A; Kijima Y; Tokoro T; Yamahara H; Okigaki M; Kosaki A; Iwasaka T
    Hypertens Res; 2004 May; 27(5):345-9. PubMed ID: 15198482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved flow measurement using microbubble contrast agents and disruption-replenishment: clinical application to tumour monitoring.
    Hudson JM; Williams R; Lloyd B; Atri M; Kim TK; Bjarnason G; Burns PN
    Ultrasound Med Biol; 2011 Aug; 37(8):1210-21. PubMed ID: 21683508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refill model of rabbit kidney vasculature.
    Potdevin TC; Fowlkes JB; Moskalik AP; Carson PL
    Ultrasound Med Biol; 2006 Sep; 32(9):1331-8. PubMed ID: 16965973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new method for evaluation of split renal cortical blood flow with contrast echography.
    Hosotani Y; Takahashi N; Kiyomoto H; Ohmori K; Hitomi H; Fujioka H; Aki Y; Fukunaga M; Yuasa S; Mizushige K; Kohno M
    Hypertens Res; 2002 Jan; 25(1):77-83. PubMed ID: 11924730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal blood flow measurement with contrast-enhanced harmonic ultrasonography: evaluation of dopamine-induced changes in renal cortical perfusion in humans.
    Kishimoto N; Mori Y; Nishiue T; Shibasaki Y; Iba O; Nose A; Uchiyama-Tanaka Y; Masaki H; Matsubara H; Iwasaka T
    Clin Nephrol; 2003 Jun; 59(6):423-8. PubMed ID: 12834173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Assessment of the distribution of renal cortical blood flow by contrast ultrasonography].
    Fujita Y; Yura T; Fujioka H; Uchida K; Shoji T; Takahashi N; Sumikura T; Yuasa S; Matsuo H
    Nihon Jinzo Gakkai Shi; 1994 Mar; 36(3):218-26. PubMed ID: 8196218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of renal blood flow with contrast-enhanced ultrasound.
    Wei K; Le E; Bin JP; Coggins M; Thorpe J; Kaul S
    J Am Coll Cardiol; 2001 Mar; 37(4):1135-40. PubMed ID: 11263620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the design of a capillary flow phantom for the evaluation of ultrasound contrast agents at very low flow velocities.
    Veltmann C; Lohmaier S; Schlosser T; Shai S; Ehlgen A; Pohl C; Becher H; Tiemann K
    Ultrasound Med Biol; 2002 May; 28(5):625-34. PubMed ID: 12079699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal cortical ischemia in rabbits revealed by contrast-enhanced power Doppler sonography.
    Taylor GA; Barnewolt CE; Adler BH; Dunning PS
    AJR Am J Roentgenol; 1998 Feb; 170(2):417-22. PubMed ID: 9456957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volumetric contrast-enhanced ultrasound imaging of renal perfusion.
    Mahoney M; Sorace A; Warram J; Samuel S; Hoyt K
    J Ultrasound Med; 2014 Aug; 33(8):1427-37. PubMed ID: 25063408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrast-enhanced ultrasonography to evaluate changes in renal cortical microcirculation induced by noradrenaline: a pilot study.
    Schneider AG; Goodwin MD; Schelleman A; Bailey M; Johnson L; Bellomo R
    Crit Care; 2014 Dec; 18(6):653. PubMed ID: 25439317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of flow using ultrasound and microbubbles: a disruption replenishment model based on physical principles.
    Hudson JM; Karshafian R; Burns PN
    Ultrasound Med Biol; 2009 Dec; 35(12):2007-20. PubMed ID: 19822390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The quantification of absolute myocardial perfusion in humans by contrast echocardiography: algorithm and validation.
    Vogel R; Indermühle A; Reinhardt J; Meier P; Siegrist PT; Namdar M; Kaufmann PA; Seiler C
    J Am Coll Cardiol; 2005 Mar; 45(5):754-62. PubMed ID: 15734622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal retention of lipid microbubbles: a potential mechanism for flank discomfort during ultrasound contrast administration.
    Liu YN; Khangura J; Xie A; Belcik JT; Qi Y; Davidson BP; Zhao Y; Kim S; Inaba Y; Lindner JR
    J Am Soc Echocardiogr; 2013 Dec; 26(12):1474-81. PubMed ID: 24035699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.