BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

713 related articles for article (PubMed ID: 19193516)

  • 1. A three-dimensional biomechanical evaluation of quadriceps and hamstrings function using electrical stimulation.
    Hunter BV; Thelen DG; Dhaher YY
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):167-75. PubMed ID: 19193516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait.
    Correa TA; Baker R; Graham HK; Pandy MG
    J Biomech; 2011 Jul; 44(11):2096-105. PubMed ID: 21703627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dynamic model of quadriceps and hamstrings function.
    Frigo C; Pavan EE; Brunner R
    Gait Posture; 2010 Jan; 31(1):100-3. PubMed ID: 19836244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity.
    Arnold AS; Salinas S; Asakawa DJ; Delp SL
    Comput Aided Surg; 2000; 5(2):108-19. PubMed ID: 10862133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis.
    Ackland DC; Lin YC; Pandy MG
    J Biomech; 2012 May; 45(8):1463-71. PubMed ID: 22507351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculated moment-arm and muscle-tendon lengths during gait differ substantially using MR based versus rescaled generic lower-limb musculoskeletal models.
    Scheys L; Spaepen A; Suetens P; Jonkers I
    Gait Posture; 2008 Nov; 28(4):640-8. PubMed ID: 18534855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait evaluation of a novel hip constraint orthosis with implication for walking in paraplegia.
    Audu ML; To CS; Kobetic R; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2010 Dec; 18(6):610-8. PubMed ID: 20378478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimentally reduced hip abductor function during walking: Implications for knee joint loads.
    Henriksen M; Aaboe J; Simonsen EB; Alkjaer T; Bliddal H
    J Biomech; 2009 Jun; 42(9):1236-40. PubMed ID: 19368926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths.
    Scheys L; Van Campenhout A; Spaepen A; Suetens P; Jonkers I
    Gait Posture; 2008 Oct; 28(3):358-65. PubMed ID: 18571416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: an induced position analysis.
    Anderson FC; Goldberg SR; Pandy MG; Delp SL
    J Biomech; 2004 May; 37(5):731-7. PubMed ID: 15047002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new hybrid spring brake orthosis for controlling hip and knee flexion in the swing phase.
    Gharooni S; Heller B; Tokhi MO
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):106-7. PubMed ID: 11482357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maintenance of upright standing posture during trunk rotation elicited by rapid and asymmetrical movements of the arms.
    Yamazaki Y; Suzuki M; Ohkuwa T; Itoh H
    Brain Res Bull; 2005 Sep; 67(1-2):30-9. PubMed ID: 16140160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in lower limb transverse plane joint moments during gait when expressed in two alternative reference frames.
    Schache AG; Baker R; Vaughan CL
    J Biomech; 2007; 40(1):9-19. PubMed ID: 16442547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical mechanism for transitions in phase and frequency of arm and leg swing during walking.
    Kubo M; Wagenaar RC; Saltzman E; Holt KG
    Biol Cybern; 2004 Aug; 91(2):91-8. PubMed ID: 15351887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-dimensional kinematic and dynamic study of the lower limb during the stance phase of gait using an homogeneous matrix approach.
    Doriot N; Chèze L
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):21-7. PubMed ID: 14723490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint kinetics during Tai Chi gait and normal walking gait in young and elderly Tai Chi Chuan practitioners.
    Wu G; Millon D
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):787-95. PubMed ID: 18342415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation parameter optimization for functional electrical stimulation assisted gait in human spinal cord injury using response surface methodology.
    Kim Y; Schmit BD; Youm Y
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):485-94. PubMed ID: 16488061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of feedback and feedforward strategies to locomotor adaptations.
    Lam T; Anderschitz M; Dietz V
    J Neurophysiol; 2006 Feb; 95(2):766-73. PubMed ID: 16424453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in muscle activation patterns during robotic-assisted walking.
    Hidler JM; Wall AE
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):184-93. PubMed ID: 15621324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional geometry of the human biceps femoris long head measured in vivo using magnetic resonance imaging.
    Schache AG; Ackland DC; Fok L; Koulouris G; Pandy MG
    Clin Biomech (Bristol, Avon); 2013 Mar; 28(3):278-84. PubMed ID: 23312212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.