BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 19193940)

  • 1. The anterolateral projections of the medial basal hypothalamus affect sleep.
    Peterfi Z; Makara GB; Obál F; Krueger JM
    Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R1228-38. PubMed ID: 19193940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep-wake behavior and responses to sleep deprivation of mice lacking both interleukin-1 beta receptor 1 and tumor necrosis factor-alpha receptor 1.
    Baracchi F; Opp MR
    Brain Behav Immun; 2008 Aug; 22(6):982-93. PubMed ID: 18329246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus.
    Wiater MF; Mukherjee S; Li AJ; Dinh TT; Rooney EM; Simasko SM; Ritter S
    Am J Physiol Regul Integr Comp Physiol; 2011 Nov; 301(5):R1569-83. PubMed ID: 21880863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective and total sleep deprivation: effect on the sleep EEG in the rat.
    Endo T; Schwierin B; Borbély AA; Tobler I
    Psychiatry Res; 1997 Feb; 66(2-3):97-110. PubMed ID: 9075274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep in spontaneous dwarf rats.
    Peterfi Z; Obal F; Taishi P; Gardi J; Kacsoh B; Unterman T; Krueger JM
    Brain Res; 2006 Sep; 1108(1):133-46. PubMed ID: 16859658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of elevated ambient temperature on sleep, EEG spectra, and brain temperature in the rat.
    Gao BO; Franken P; Tobler I; Borbély AA
    Am J Physiol; 1995 Jun; 268(6 Pt 2):R1365-73. PubMed ID: 7611510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system.
    Villablanca JR
    J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estradiol and progesterone modulate spontaneous sleep patterns and recovery from sleep deprivation in ovariectomized rats.
    Deurveilher S; Rusak B; Semba K
    Sleep; 2009 Jul; 32(7):865-77. PubMed ID: 19639749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Female reproductive hormones alter sleep architecture in ovariectomized rats.
    Deurveilher S; Rusak B; Semba K
    Sleep; 2011 Apr; 34(4):519-30. PubMed ID: 21461331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep regulation in rats: effects of sleep deprivation, light, and circadian phase.
    Trachsel L; Tobler I; Borbély AA
    Am J Physiol; 1986 Dec; 251(6 Pt 2):R1037-44. PubMed ID: 3789191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sepsis-induced alterations in sleep of rats.
    Baracchi F; Ingiosi AM; Raymond RM; Opp MR
    Am J Physiol Regul Integr Comp Physiol; 2011 Nov; 301(5):R1467-78. PubMed ID: 21900639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GHRH and sleep.
    Obal F; Krueger JM
    Sleep Med Rev; 2004 Oct; 8(5):367-77. PubMed ID: 15336237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Food restriction alters the diurnal distribution of sleep in rats.
    Roky R; Kapás L; Taishi TP; Fang J; Krueger JM
    Physiol Behav; 1999 Nov; 67(5):697-703. PubMed ID: 10604840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deficiency of growth hormone-releasing hormone signaling is associated with sleep alterations in the dwarf rat.
    Obál F; Fang J; Taishi P; Kacsóh B; Gardi J; Krueger JM
    J Neurosci; 2001 Apr; 21(8):2912-8. PubMed ID: 11306643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The somatotropic axis and sleep.
    Obál F; Krueger JM
    Rev Neurol (Paris); 2001 Nov; 157(11 Pt 2):S12-5. PubMed ID: 11924022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation.
    Bodosi B; Gardi J; Hajdu I; Szentirmai E; Obal F; Krueger JM
    Am J Physiol Regul Integr Comp Physiol; 2004 Nov; 287(5):R1071-9. PubMed ID: 15475503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold exposure impairs dark-pulse capacity to induce REM sleep in the albino rat.
    Baracchi F; Zamboni G; Cerri M; Del Sindaco E; Dentico D; Jones CA; Luppi M; Perez E; Amici R
    J Sleep Res; 2008 Jun; 17(2):166-79. PubMed ID: 18482105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.
    Cui SY; Li SJ; Cui XY; Zhang XQ; Yu B; Sheng ZF; Huang YL; Cao Q; Xu YP; Lin ZG; Yang G; Song JZ; Ding H; Wang ZJ; Zhang YH
    J Neurochem; 2016 Feb; 136(3):609-19. PubMed ID: 26558357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in EEG activity and hypothalamic temperature as indices for non-REM sleep to REM sleep transitions.
    Capitani P; Cerri M; Amici R; Baracchi F; Jones CA; Luppi M; Perez E; Parmeggiani PL; Zamboni G
    Neurosci Lett; 2005 Jul 22-29; 383(1-2):182-7. PubMed ID: 15936533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ovarian hormones promote recovery from sleep deprivation by increasing sleep intensity in middle-aged ovariectomized rats.
    Deurveilher S; Seary ME; Semba K
    Horm Behav; 2013 Apr; 63(4):566-76. PubMed ID: 23454003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.