These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1919415)

  • 21. Control of red blood cell metabolism in rainbow trout after exhaustive exercise.
    Wood CM; Walsh PJ; Thomas S; Perry SF
    J Exp Biol; 1990 Nov; 154():491-507. PubMed ID: 2126030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic fuel kinetics in fish: swimming, hypoxia and muscle membranes.
    Weber JM; Choi K; Gonzalez A; Omlin T
    J Exp Biol; 2016 Jan; 219(Pt 2):250-8. PubMed ID: 26792337
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of sublethal ammonia exposure on swimming performance in rainbow trout (Oncorhynchus mykiss).
    Shingles A; McKenzie DJ; Taylor EW; Moretti A; Butler PJ; Ceradini S
    J Exp Biol; 2001 Aug; 204(Pt 15):2691-8. PubMed ID: 11533119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lean, mean, lipolytic machines: lipid mobilization in rainbow trout during graded swimming.
    Turenne ED; Weber JM
    J Exp Biol; 2018 Jan; 221(Pt 2):. PubMed ID: 29212842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Endurance swimming activates trout lipoprotein lipase: plasma lipids as a fuel for muscle.
    Magnoni L; Weber JM
    J Exp Biol; 2007 Nov; 210(Pt 22):4016-23. PubMed ID: 17981869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of low-speed swimming following exhaustive exercise on metabolic recovery and swimming performance in brook trout (Salvelinus fontinalis).
    Kieffer JD; Kassie RS; Taylor SG
    Physiol Biochem Zool; 2011; 84(4):385-93. PubMed ID: 21743252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Saving energy to fuel exercise: swimming suppresses oocyte development and downregulates ovarian transcriptomic response of rainbow trout Oncorhynchus mykiss.
    Palstra AP; Crespo D; van den Thillart GE; Planas JV
    Am J Physiol Regul Integr Comp Physiol; 2010 Aug; 299(2):R486-99. PubMed ID: 20445157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exercise training in skeletal muscle of brook trout (Salvelinus fontinalis).
    Johnston IA; Moon TW
    J Exp Biol; 1980 Aug; 87():177-94. PubMed ID: 7420013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrating metabolic pathways in post-exercise recovery of white muscle.
    Schulte PM; Moyes CD; Hochachka PW
    J Exp Biol; 1992 May; 166():181-95. PubMed ID: 1602273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasma catecholamines in the lesser spotted dogfish and rainbow trout at rest and during different levels of exercise.
    Butler PJ; Metcalfe JD; Ginley SA
    J Exp Biol; 1986 Jul; 123():409-21. PubMed ID: 3746197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of sustained swimming on the red and white muscle transcriptome of rainbow trout (Oncorhynchus mykiss) fed a carbohydrate-rich diet.
    Magnoni LJ; Crespo D; Ibarz A; Blasco J; Fernández-Borràs J; Planas JV
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Nov; 166(3):510-21. PubMed ID: 23968867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of endurance training on arterial plasma K+ levels and swimming performance of rainbow trout.
    Holk K; Lykkeboe G
    J Exp Biol; 1998 May; 201 (Pt 9)():1373-80. PubMed ID: 9547318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo lactate kinetics at rest and during recovery from exhaustive exercise in coho salmon (Oncorhynchus kisutch) and starry flounder (Platichthys stellatus).
    Milligan CL; McDonald DG
    J Exp Biol; 1988 Mar; 135():119-31. PubMed ID: 3131476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sustained swimming at low velocity following a bout of exhaustive exercise enhances metabolic recovery in rainbow trout.
    Milligan CL; Hooke GB; Johnson C
    J Exp Biol; 2000 Mar; 203(Pt 5):921-6. PubMed ID: 10667975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of red blood cell metabolism in rainbow trout.
    Walsh PJ; Wood CM; Thomas S; Perry SF
    J Exp Biol; 1990 Nov; 154():475-89. PubMed ID: 2126029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An acute increase in water temperature can decrease the swimming performance and energy utilization efficiency in rainbow trout (Oncorhynchus mykiss).
    Yin L; Chen L; Wang M; Li H; Yu X
    Fish Physiol Biochem; 2021 Feb; 47(1):109-120. PubMed ID: 33211244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fuel use during glycogenesis in rainbow trout (Oncorhynchus mykiss Walbaum) white muscle studied in vitro.
    Kam JC; Milligan CL
    J Exp Biol; 2006 Mar; 209(Pt 5):871-80. PubMed ID: 16481576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relating intramuscular fuel use to endurance in juvenile rainbow trout.
    McFarlane WJ; McDonald DG
    Physiol Biochem Zool; 2002; 75(3):250-9. PubMed ID: 12177828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The interactive effects of feeding and exercise on oxygen consumption, swimming performance and protein usage in juvenile rainbow trout (Oncorhynchus mykiss).
    Alsop D; Wood C
    J Exp Biol; 1997; 200(Pt 17):2337-46. PubMed ID: 9320259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Swimming performance and energy metabolism of rainbow trout, common carp and gibel carp respond differently to sublethal copper exposure.
    De Boeck G; van der Ven K; Hattink J; Blust R
    Aquat Toxicol; 2006 Oct; 80(1):92-100. PubMed ID: 16956679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.