These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 19194896)
1. Effects of glucose and nitrogen source concentration on batch fermentation kinetics of Lactococcus lactis under hemin-stimulated respirative condition. Razvi A; Zhang Z; Lan CQ Biotechnol Prog; 2008; 24(4):852-8. PubMed ID: 19194896 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of Lactococcus lactis growth and metabolite formation under aerobic and anaerobic conditions in the presence or absence of hemin. Lan CQ; Oddone G; Mills DA; Block DE Biotechnol Bioeng; 2006 Dec; 95(6):1070-80. PubMed ID: 16807924 [TBL] [Abstract][Full Text] [Related]
3. Analysis of hemin effect on lactate reduction in Lactococcus lactis. Nagayasu M; Wardani AK; Nagahisa K; Shimizu H; Shioya S J Biosci Bioeng; 2007 Jun; 103(6):529-34. PubMed ID: 17630124 [TBL] [Abstract][Full Text] [Related]
4. Variable volume fed-batch fermentation for nisin production by Lactococcus lactis subsp. lactis W28. Wu Z; Wang L; Jing Y; Li X; Zhao Y Appl Biochem Biotechnol; 2009 Mar; 152(3):372-82. PubMed ID: 18712289 [TBL] [Abstract][Full Text] [Related]
5. Production of nisin with continuous adsorption to Amberlite XAD-4 resin using Lactococcus lactis N8 and L. lactis LAC48. Tolonen M; Saris PE; Siika-Aho M Appl Microbiol Biotechnol; 2004 Feb; 63(6):659-65. PubMed ID: 12910326 [TBL] [Abstract][Full Text] [Related]
6. Lactococcus lactis as a cell factory: a twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation. Papagianni M; Avramidis N Enzyme Microb Technol; 2011 Jul; 49(2):197-202. PubMed ID: 22112409 [TBL] [Abstract][Full Text] [Related]
7. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Shi XM; Jiang Y; Chen F Biotechnol Prog; 2002; 18(4):723-7. PubMed ID: 12153304 [TBL] [Abstract][Full Text] [Related]
8. Nisin production of Lactococcus lactis N8 with hemin-stimulated cell respiration in fed-batch fermentation system. Kördikanlıoğlu B; Şimşek Ö; Saris PE Biotechnol Prog; 2015; 31(3):678-85. PubMed ID: 25826783 [TBL] [Abstract][Full Text] [Related]
9. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions. Koebmann B; Blank LM; Solem C; Petranovic D; Nielsen LK; Jensen PR Biotechnol Appl Biochem; 2008 May; 50(Pt 1):25-33. PubMed ID: 17824842 [TBL] [Abstract][Full Text] [Related]
10. Optimization of fed-batch production of the model recombinant protein GFP in Lactococcus lactis. Oddone GM; Lan CQ; Rawsthorne H; Mills DA; Block DE Biotechnol Bioeng; 2007 Apr; 96(6):1127-38. PubMed ID: 17117427 [TBL] [Abstract][Full Text] [Related]
11. Modeling of Xanthophyllomyces dendrorhous growth on glucose and overflow metabolism in batch and fed-batch cultures for astaxanthin production. Liu YS; Wu JY Biotechnol Bioeng; 2008 Dec; 101(5):996-1004. PubMed ID: 18683256 [TBL] [Abstract][Full Text] [Related]
12. [Components of fermentation medium regulate bacteriocin synthesis by the recombinant strain Lactococcus lactis subsp. lactis F-116]. Stoianova LG; Levina NA Mikrobiologiia; 2006; 75(3):342-8. PubMed ID: 16871800 [TBL] [Abstract][Full Text] [Related]
13. Engineering the central pathways in Lactococcus lactis: functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions. Papagianni M; Avramidis N Enzyme Microb Technol; 2012 Aug; 51(3):125-30. PubMed ID: 22759530 [TBL] [Abstract][Full Text] [Related]
14. Modelling the production of nisin by Lactococcus lactis in fed-batch culture. Lv W; Zhang X; Cong W Appl Microbiol Biotechnol; 2005 Aug; 68(3):322-6. PubMed ID: 15692804 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of nisin production by Lactococcus lactis in periodically re-alkalized cultures. Guerra NP; Castro LP Biotechnol Appl Biochem; 2003 Oct; 38(Pt 2):157-67. PubMed ID: 12793859 [TBL] [Abstract][Full Text] [Related]
16. The Joint Effect of pH Gradient and Glucose Feeding on the Growth Kinetics of Malvido MC; González EA; Bendaña Jácome RJ; Guerra NP Pol J Microbiol; 2019; 68(2):269-280. PubMed ID: 31257793 [TBL] [Abstract][Full Text] [Related]
17. Productivity improvement in xanthan gum fermentation using multiple substrate optimization. Chaitali M; Kapadi M; Suraishkumar GK; Gudi RD Biotechnol Prog; 2003; 19(4):1190-8. PubMed ID: 12892481 [TBL] [Abstract][Full Text] [Related]
19. Improvement of the respiration efficiency of Lactococcus lactis by decreasing the culture pH. Shi W; Li Y; Gao X; Fu R Biotechnol Lett; 2016 Mar; 38(3):495-501. PubMed ID: 26585330 [TBL] [Abstract][Full Text] [Related]
20. Possible synergistic effect between high lactate and insufficient intake of peptides caused biomass reduction during high-cell starter culture production. Boonmee M Benef Microbes; 2010 Jun; 1(2):175-82. PubMed ID: 21831756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]