BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 19194919)

  • 1. Separation of protein charge variants with induced pH gradients using anion exchange chromatographic columns.
    Pabst TM; Carta G; Ramasubramanyan N; Hunter AK; Mensah P; Gustafson ME
    Biotechnol Prog; 2008; 24(5):1096-106. PubMed ID: 19194919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein separations with induced pH gradients using cation-exchange chromatographic columns containing weak acid groups.
    Pabst TM; Antos D; Carta G; Ramasubramanyan N; Hunter AK
    J Chromatogr A; 2008 Feb; 1181(1-2):83-94. PubMed ID: 18194806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH transitions in cation exchange chromatographic columns containing weak acid groups.
    Pabst TM; Carta G
    J Chromatogr A; 2007 Feb; 1142(1):19-31. PubMed ID: 16978635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiproduct high-resolution monoclonal antibody charge variant separations by pH gradient ion-exchange chromatography.
    Farnan D; Moreno GT
    Anal Chem; 2009 Nov; 81(21):8846-57. PubMed ID: 19795895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of a pH gradient-based ion-exchange chromatography method for high-resolution monoclonal antibody charge variant separations.
    Rea JC; Moreno GT; Lou Y; Farnan D
    J Pharm Biomed Anal; 2011 Jan; 54(2):317-23. PubMed ID: 20884149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge heterogeneity profiling of monoclonal antibodies using low ionic strength ion-exchange chromatography and well-controlled pH gradients on monolithic columns.
    Talebi M; Nordborg A; Gaspar A; Lacher NA; Wang Q; He XZ; Haddad PR; Hilder EF
    J Chromatogr A; 2013 Nov; 1317():148-54. PubMed ID: 24011724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic generation of buffer systems for pH gradient ion exchange chromatography and their application.
    Kröner F; Hubbuch J
    J Chromatogr A; 2013 Apr; 1285():78-87. PubMed ID: 23489486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of protein mixtures using pH-gradient cation-exchange chromatography.
    Ng PK; He J; Snyder MA
    J Chromatogr A; 2009 Feb; 1216(9):1372-6. PubMed ID: 19168182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-gradient ion-exchange chromatography: an analytical tool for design and optimization of protein separations.
    Ahamed T; Nfor BK; Verhaert PD; van Dedem GW; van der Wielen LA; Eppink MH; van de Sandt EJ; Ottens M
    J Chromatogr A; 2007 Sep; 1164(1-2):181-8. PubMed ID: 17673242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory and applications of a novel ion exchange chromatographic technology using controlled pH gradients for separating proteins on anionic and cationic stationary phases.
    Tsonev LI; Hirsh AG
    J Chromatogr A; 2008 Jul; 1200(2):166-82. PubMed ID: 18554604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Buffer salt effect on pH in the interior of an anion exchange resin.
    Hardin AM; Ivory CF
    J Colloid Interface Sci; 2006 Oct; 302(2):560-7. PubMed ID: 16870202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption equilibrium of fructosyltransferase on a weak anion-exchange resin.
    Vanková K; Antosová M; Polakovic M
    J Chromatogr A; 2007 Aug; 1162(1):56-61. PubMed ID: 17543316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monoclonal antibody heterogeneity analysis and deamidation monitoring with high-performance cation-exchange chromatofocusing using simple, two component buffer systems.
    Kang X; Kutzko JP; Hayes ML; Frey DD
    J Chromatogr A; 2013 Mar; 1283():89-97. PubMed ID: 23428023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation model for overloaded monoclonal antibody variants separations in ion-exchange chromatography.
    Guélat B; Ströhlein G; Lattuada M; Delegrange L; Valax P; Morbidelli M
    J Chromatogr A; 2012 Aug; 1253():32-43. PubMed ID: 22795935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatofocusing of peptides and proteins using linear pH gradients formed on strong ion-exchange adsorbents.
    Kang X; Frey DD
    Biotechnol Bioeng; 2004 Aug; 87(3):376-87. PubMed ID: 15281112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anion-exchange behavior of several alkylsilica reversed-phase columns.
    Marchand DH; Snyder LR
    J Chromatogr A; 2008 Oct; 1209(1-2):104-10. PubMed ID: 18822417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of monoclonal antibody variants on analytical cation-exchange resin.
    Melter L; Ströhlein G; Butté A; Morbidelli M
    J Chromatogr A; 2007 Jun; 1154(1-2):121-31. PubMed ID: 17451722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of monoclonal antibodies using polymeric cation exchange monoliths in combination with salt and pH gradients.
    Nordborg A; Zhang B; He XZ; Hilder EF; Haddad PR
    J Sep Sci; 2009 Aug; 32(15-16):2668-73. PubMed ID: 19606447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of chromatographic ion-exchange resins VI. Weak anion-exchange resins.
    Staby A; Jensen RH; Bensch M; Hubbuch J; Dünweber DL; Krarup J; Nielsen J; Lund M; Kidal S; Hansen TB; Jensen IH
    J Chromatogr A; 2007 Sep; 1164(1-2):82-94. PubMed ID: 17658538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-tech electrophoresis, small but beautiful, and effective: electrophoretic titration curves of proteins.
    Gianazza E; Miller I; Eberini I; Castiglioni S
    Electrophoresis; 1999 Jun; 20(7):1325-38. PubMed ID: 10424454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.