These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 19194931)

  • 1. Facile evaluation of cell disruption efficiency using pH-controlled fluorescence resonance energy transfer.
    Kim YS; Cha HJ
    Biotechnol Prog; 2008; 24(5):1186-90. PubMed ID: 19194931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput and facile assay of antimicrobial peptides using pH-controlled fluorescence resonance energy transfer.
    Kim YS; Cha HJ
    Antimicrob Agents Chemother; 2006 Oct; 50(10):3330-5. PubMed ID: 17005813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pHlameleons: a family of FRET-based protein sensors for quantitative pH imaging.
    Esposito A; Gralle M; Dani MA; Lange D; Wouters FS
    Biochemistry; 2008 Dec; 47(49):13115-26. PubMed ID: 19007185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative measurements of protein interactions in a crowded cellular environment.
    Li E; Placone J; Merzlyakov M; Hristova K
    Anal Chem; 2008 Aug; 80(15):5976-85. PubMed ID: 18597478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence resonance energy transfer: evaluation of the intracellular stability of polyplexes.
    Breunig M; Lungwitz U; Liebl R; Goepferich A
    Eur J Pharm Biopharm; 2006 Jun; 63(2):156-65. PubMed ID: 16527471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET-based optical assay for monitoring riboswitch activation.
    Harbaugh S; Kelley-Loughnane N; Davidson M; Narayanan L; Trott S; Chushak YG; Stone MO
    Biomacromolecules; 2009 May; 10(5):1055-60. PubMed ID: 19358526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative fluorescence correction incorporating Förster resonance energy transfer and its use for measurement of hybridization efficiency on microarrays.
    Zhu J; Deng C; Huang G; Xu S; Mitchelson K; Cheng J
    Anal Chem; 2009 Feb; 81(4):1426-32. PubMed ID: 19161259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Denaturation studies reveal significant differences between GFP and blue fluorescent protein.
    Saeed IA; Ashraf SS
    Int J Biol Macromol; 2009 Oct; 45(3):236-41. PubMed ID: 19501614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined chemical and mechanical processes for the disruption of bacteria.
    Harrison ST; Dennis JS; Chase HA
    Bioseparation; 1991; 2(2):95-105. PubMed ID: 1368079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compact quantum dot probes for rapid and sensitive DNA detection using highly efficient fluorescence resonant energy transfer.
    Wu CS; Cupps JM; Fan X
    Nanotechnology; 2009 Jul; 20(30):305502. PubMed ID: 19581695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent proteins for single-molecule fluorescence applications.
    Seefeldt B; Kasper R; Seidel T; Tinnefeld P; Dietz KJ; Heilemann M; Sauer M
    J Biophotonics; 2008 Mar; 1(1):74-82. PubMed ID: 19343637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of intensity-based ratiometric FRET in image cytometry--approaches and a software solution.
    Roszik J; Lisboa D; Szöllosi J; Vereb G
    Cytometry A; 2009 Sep; 75(9):761-7. PubMed ID: 19591240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of caspase-3 activation by fitting fluorescence emission spectra in living cells.
    Wang L; Chen T; Qu J; Wei X
    Micron; 2009 Dec; 40(8):811-20. PubMed ID: 19647441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Phos-tag-based fluorescence resonance energy transfer system for the analysis of the dephosphorylation of phosphopeptides.
    Takiyama K; Kinoshita E; Kinoshita-Kikuta E; Fujioka Y; Kubo Y; Koike T
    Anal Biochem; 2009 May; 388(2):235-41. PubMed ID: 19281791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of in vitro SUMOylation using bioluminescence resonance energy transfer (BRET).
    Kim YP; Jin Z; Kim E; Park S; Oh YH; Kim HS
    Biochem Biophys Res Commun; 2009 May; 382(3):530-4. PubMed ID: 19289109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH on aqueous phenylalanine studied using a 265-nm pulsed light-emitting diode.
    Macmillan AM; McGuinness CD; Sagoo K; McLoskey D; Pickup JC; Birch DJ
    Ann N Y Acad Sci; 2008; 1130():300-4. PubMed ID: 18596363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basic aspects of absorption and fluorescence spectroscopy and resonance energy transfer methods.
    Shanker N; Bane SL
    Methods Cell Biol; 2008; 84():213-42. PubMed ID: 17964933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiparameter fluorescence image spectroscopy to study molecular interactions.
    Weidtkamp-Peters S; Felekyan S; Bleckmann A; Simon R; Becker W; Kühnemuth R; Seidel CA
    Photochem Photobiol Sci; 2009 Apr; 8(4):470-80. PubMed ID: 19337660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemically induced unfolding of bovine serum albumin by urea and sodium dodecyl sulfate: a spectral study with the polarity-sensitive charge-transfer fluorescent probe (E)-3-(4-methylaminophenyl)acrylic acid methyl ester.
    Ghosh S; Guchhait N
    Chemphyschem; 2009 Jul; 10(9-10):1664-71. PubMed ID: 19466702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging.
    Carlson HJ; Campbell RE
    Curr Opin Biotechnol; 2009 Feb; 20(1):19-27. PubMed ID: 19223167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.