BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 19194939)

  • 1. Homogeneous esterification by lipase from Burkholderia cepacia in the fluorinated solvent.
    Shipovskov S
    Biotechnol Prog; 2008; 24(6):1262-6. PubMed ID: 19194939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Esterification activity and conformation studies of Burkholderia cepacia lipase in conventional organic solvents, ionic liquids and their co-solvent mixture media.
    Pan S; Liu X; Xie Y; Yi Y; Li C; Yan Y; Liu Y
    Bioresour Technol; 2010 Dec; 101(24):9822-4. PubMed ID: 20713309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(ethylene glycol)-lipase complexes catalytically active in fluorous solvents.
    Maruyama T; Kotani T; Yamamura H; Kamiya N; Goto M
    Org Biomol Chem; 2004 Feb; 2(4):524-7. PubMed ID: 14770231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic-surfactant-coated Burkholderia cepacia lipase as a highly active and enantioselective catalyst for the dynamic kinetic resolution of secondary alcohols.
    Kim H; Choi YK; Lee J; Lee E; Park J; Kim MJ
    Angew Chem Int Ed Engl; 2011 Nov; 50(46):10944-8. PubMed ID: 21954139
    [No Abstract]   [Full Text] [Related]  

  • 5. Stable colloidal dispersions of a lipase-perfluoropolyether complex in liquid and supercritical carbon dioxide.
    Adkins SS; Hobbs HR; Benaissi K; Johnston KP; Poliakoff M; Thomas NR
    J Phys Chem B; 2008 Apr; 112(15):4760-9. PubMed ID: 18363394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolution of 2-nitroalcohols by Burkholderia cepacia lipase-catalyzed enantioselective acylation.
    Li N; Hu SB; Feng GY
    Biotechnol Lett; 2012 Jan; 34(1):153-8. PubMed ID: 21972142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic resolution of (+/-)-1-phenylethanol in [Bmim][PF6] using high activity preparations of lipases.
    Shah S; Gupta MN
    Bioorg Med Chem Lett; 2007 Feb; 17(4):921-4. PubMed ID: 17157018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A lipase with broad solvent stability from Burkholderia cepacia RQ3: isolation, characteristics and application for chiral resolution of 1-phenylethanol.
    Xie C; Wu B; Qin S; He B
    Bioprocess Biosyst Eng; 2016 Jan; 39(1):59-66. PubMed ID: 26497492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-line low-volume transesterification-based assay for immobilized lipases.
    Urban PL; Goodall DM; Bergström ET; Bruce NC
    J Biotechnol; 2006 Dec; 126(4):508-18. PubMed ID: 16793159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipase entrapment in protamine-induced bio-zirconia particles: characterization and application to the resolution of (R,S)-1-phenylethanol.
    Wang JY; Ma CL; Bao YM; Xu PS
    Enzyme Microb Technol; 2012 Jun; 51(1):40-6. PubMed ID: 22579389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of enzyme activity and enantioselectivity by cyclopentyl methyl ether in the transesterification catalyzed by Pseudomonas cepacia lipase co-lyophilized with cyclodextrins.
    Mine Y; Zhang L; Fukunaga K; Sugimura Y
    Biotechnol Lett; 2005 Mar; 27(6):383-8. PubMed ID: 15834802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity of lipase from Burkholderia cepacia in the synthesis of 3'-arylaliphatic acid esters of floxuridine.
    Li N; Zeng QM; Zong MH
    J Biotechnol; 2009 Jul; 142(3-4):267-70. PubMed ID: 19539679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Optical resolution of 2-alkanol by lipase-catalyzed acetylation with vinyl acetate in packed-bed reactor with recycling system].
    Yanagishita H; Sakaki K; Hirata H
    J Oleo Sci; 2007; 56(3):137-48. PubMed ID: 17898475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudomonas cepacia lipase--mediated transesterification reactions of hydrocinnamates.
    Priya K; Venugopal T; Chadha A
    Indian J Biochem Biophys; 2002 Aug; 39(4):259-63. PubMed ID: 22908416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodiesel production from triolein and short chain alcohols through biocatalysis.
    Salis A; Pinna M; Monduzzi M; Solinas V
    J Biotechnol; 2005 Sep; 119(3):291-9. PubMed ID: 15950307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model.
    Schulz T; Pleiss J; Schmid RD
    Protein Sci; 2000 Jun; 9(6):1053-62. PubMed ID: 10892799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mono- and disaccharides enhance the activity and enantioselectivity of Burkholderia cepacia lipase in organic solvent but do not significantly affect its conformation.
    Secundo F; Carrea G
    Biotechnol Bioeng; 2005 Nov; 92(4):438-46. PubMed ID: 16028297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(ethylene glycol)-lipase complexes that are highly active and enantioselective in ionic liquids.
    Maruyama T; Yamamura H; Kotani T; Kamiya N; Goto M
    Org Biomol Chem; 2004 Apr; 2(8):1239-44. PubMed ID: 15064803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient regioselective synthesis of 3'-O-crotonylfloxuridine catalysed by Pseudomonas cepacia lipase.
    Zhao Z; Zong M; Li N
    Biotechnol Appl Biochem; 2009 Jan; 52(Pt 1):45-51. PubMed ID: 18373494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodiesel synthesis and conformation of lipase from Burkholderia cepacia in room temperature ionic liquids and organic solvents.
    Liu Y; Chen D; Yan Y; Peng C; Xu L
    Bioresour Technol; 2011 Nov; 102(22):10414-8. PubMed ID: 21955878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.