These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 19194972)
1. Determination of adsorption isotherms by means of HPLC: adsorption mechanism elucidation and separation optimization. Marchetti N; Cavazzini A; Pasti L; Dondi F J Sep Sci; 2009 Mar; 32(5-6):727-41. PubMed ID: 19194972 [TBL] [Abstract][Full Text] [Related]
2. A comparison of frontal and nonfrontal methods for determining solid-liquid adsorption isotherms using inverse liquid chromatography. Ylä-Mäihäniemi PP; Williams DR Langmuir; 2007 Mar; 23(7):4095-101. PubMed ID: 17328566 [TBL] [Abstract][Full Text] [Related]
3. Determination of competitive adsorption isotherms applying the nonlinear frequency response method. Part II. Experimental demonstration. Ilić M; Petkovska M; Seidel-Morgenstern A J Chromatogr A; 2009 Aug; 1216(33):6108-18. PubMed ID: 19586634 [TBL] [Abstract][Full Text] [Related]
4. Theoretical study of the accuracy of the pulse method, frontal analysis, and frontal analysis by characteristic points for the determination of single component adsorption isotherms. Andrzejewska A; Kaczmarski K; Guiochon G J Chromatogr A; 2009 Feb; 1216(7):1067-83. PubMed ID: 19147153 [TBL] [Abstract][Full Text] [Related]
5. Accurate and rapid estimation of adsorption isotherms in liquid chromatography using the inverse method on plateaus. Arnell R; Forssén P; Fornstedt T J Chromatogr A; 2005 Dec; 1099(1-2):167-74. PubMed ID: 16297923 [TBL] [Abstract][Full Text] [Related]
6. Critical contribution of nonlinear chromatography to the understanding of retention mechanism in reversed-phase liquid chromatography. Gritti F; Guiochon G J Chromatogr A; 2005 Dec; 1099(1-2):1-42. PubMed ID: 16271269 [TBL] [Abstract][Full Text] [Related]
7. Systematic errors in the measurement of adsorption isotherms by frontal analysis Impact of the choice of column hold-up volume, range and density of the data points. Gritti F; Guiochon G J Chromatogr A; 2005 Dec; 1097(1-2):98-115. PubMed ID: 16298189 [TBL] [Abstract][Full Text] [Related]
8. Characterization of adsorption processes in analytical liquid-solid chromatography. Fornstedt T J Chromatogr A; 2010 Feb; 1217(6):792-812. PubMed ID: 20053406 [TBL] [Abstract][Full Text] [Related]
9. Determination of competitive adsorption isotherms applying the nonlinear frequency response method. Part I. Theoretical analysis. Ilić M; Petkovska M; Seidel-Morgenstern A J Chromatogr A; 2009 Aug; 1216(33):6098-107. PubMed ID: 19586632 [TBL] [Abstract][Full Text] [Related]
10. Numerical determination of competitive adsorption isotherm of mandelic acid enantiomers on cellulose-based chiral stationary phase. Zhang Y; Rohani S; Ray AK J Chromatogr A; 2008 Aug; 1202(1):34-9. PubMed ID: 18602639 [TBL] [Abstract][Full Text] [Related]
11. Determination of adsorption isotherms in supercritical fluid chromatography. Enmark M; Forssén P; Samuelsson J; Fornstedt T J Chromatogr A; 2013 Oct; 1312():124-33. PubMed ID: 24041510 [TBL] [Abstract][Full Text] [Related]
12. Potential of adsorption isotherm measurements for closer elucidating of binding in chiral liquid chromatographic phase systems. Samuelsson J; Arnell R; Fornstedt T J Sep Sci; 2009 May; 32(10):1491-506. PubMed ID: 19472282 [TBL] [Abstract][Full Text] [Related]
13. Improvement in the generation of adsorption isotherm data in the elution by characteristic points method--the ECP-slope approach. Samuelsson J; Undin T; Törncrona A; Fornstedt T J Chromatogr A; 2010 Nov; 1217(46):7215-21. PubMed ID: 20933238 [TBL] [Abstract][Full Text] [Related]
14. Estimation of adsorption isotherm parameters with inverse method--possible problems. Kaczmarski K J Chromatogr A; 2007 Dec; 1176(1-2):57-68. PubMed ID: 17723232 [TBL] [Abstract][Full Text] [Related]
15. Expanding the elution by characteristic point method for determination of various types of adsorption isotherms. Samuelsson J; Undin T; Fornstedt T J Chromatogr A; 2011 Jun; 1218(24):3737-42. PubMed ID: 21570689 [TBL] [Abstract][Full Text] [Related]
16. Validation of the accuracy of the perturbation peak method for determination of multicomponent adsorption isotherm parameters in LC. Lindholm J; Forssén P; Fornstedt T Anal Chem; 2004 Sep; 76(18):5472-8. PubMed ID: 15362909 [TBL] [Abstract][Full Text] [Related]
17. Determination of competitive isotherms of enantiomers by a hybrid inverse method using overloaded band profiles and the periodic state of the simulated moving-bed process. Araújo JM; Rodrigues RC; Mota JP J Chromatogr A; 2008 May; 1189(1-2):302-13. PubMed ID: 18243230 [TBL] [Abstract][Full Text] [Related]
18. Adsorption of the enantiomers of 3-chloro-1-phenyl-propanol on silica-bonded chiral quinidine carbamate. Asnin L; Kaczmarski K; Felinger A; Gritti F; Guiochon G J Chromatogr A; 2006 Jan; 1101(1-2):158-70. PubMed ID: 16236290 [TBL] [Abstract][Full Text] [Related]
19. Impact of an error in the column hold-up time for correct adsorption isotherm determination in chromatography I. Even a small error can lead to a misunderstanding of the retention mechanism. Samuelsson J; Sajonz P; Fornstedt T J Chromatogr A; 2008 May; 1189(1-2):19-31. PubMed ID: 17981287 [TBL] [Abstract][Full Text] [Related]
20. Validation of the accuracy of the perturbation peak method for determination of single and binary adsorption isotherm parameters in LC. Lindholm J; Forssén P; Fornstedt T Anal Chem; 2004 Aug; 76(16):4856-65. PubMed ID: 15307798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]