BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 19194973)

  • 1. Less common applications of monoliths: IV. Recent developments in immobilized enzyme reactors for proteomics and biotechnology.
    Krenkova J; Svec F
    J Sep Sci; 2009 Mar; 32(5-6):706-18. PubMed ID: 19194973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscale immobilized enzyme reactors in proteomics: latest developments.
    Safdar M; Spross J; Jänis J
    J Chromatogr A; 2014 Jan; 1324():1-10. PubMed ID: 24360812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow-through immobilized enzyme reactors based on monoliths: II. Kinetics study and application.
    Vlakh EG; Tennikova TB
    J Sep Sci; 2013 Mar; 36(6):1149-67. PubMed ID: 23495116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilized monolithic enzyme reactors for application in proteomics and pharmaceutics.
    Spross J; Sinz A
    Anal Bioanal Chem; 2009 Nov; 395(6):1583-8. PubMed ID: 19669640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow-through enzymatic reactors using polymer monoliths: From motivation to application.
    Mao Y; Fan R; Li R; Ye X; Kulozik U
    Electrophoresis; 2021 Dec; 42(24):2599-2614. PubMed ID: 33314167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Less common applications of monoliths: I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports.
    Svec F
    Electrophoresis; 2006 Mar; 27(5-6):947-61. PubMed ID: 16470758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New monolithic chromatographic supports for macromolecules immobilization: challenges and opportunities.
    Calleri E; Ambrosini S; Temporini C; Massolini G
    J Pharm Biomed Anal; 2012 Oct; 69():64-76. PubMed ID: 22386208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of reactive porous polymer supports for high throughput bioreactors: poly(2-vinyl-4,4-dimethylazlactone-co-acrylamide- co-ethylene dimethacrylate) monoliths.
    Xie S; Svec F; Fréchet JM
    Biotechnol Bioeng; 1999 Jan; 62(1):30-5. PubMed ID: 10099510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilized enzyme reactors based on monoliths: Effect of pore size and enzyme loading on biocatalytic process.
    Volokitina MV; Nikitina AV; Tennikova TB; Korzhikova-Vlakh EG
    Electrophoresis; 2017 Nov; 38(22-23):2931-2939. PubMed ID: 28834560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous monoliths for on-line sample preparation: A review.
    Masini JC; Svec F
    Anal Chim Acta; 2017 Apr; 964():24-44. PubMed ID: 28351637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of monolithic supports in proteomics technology.
    Josic D; Clifton JG
    J Chromatogr A; 2007 Mar; 1144(1):2-13. PubMed ID: 17174320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bifunctional monolithic column for combined protein preconcentration and digestion for high throughput proteomics research.
    Zhang K; Wu S; Tang X; Kaiser NK; Bruce JE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):223-30. PubMed ID: 17150420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and application of immobilized enzymatic reactors for consecutive digestion with two enzymes.
    Wang B; Shangguan L; Wang S; Zhang L; Zhang W; Liu F
    J Chromatogr A; 2016 Dec; 1477():22-29. PubMed ID: 27884426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilized monolithic enzymatic reactor and its application for analysis of in-vitro fertilization media samples.
    Chen WQ; Obermayr P; Černigoj U; Vidič J; Panić-Janković T; Mitulović G
    Electrophoresis; 2017 Nov; 38(22-23):2957-2964. PubMed ID: 28613010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of CIM monoliths as enzyme reactors.
    Vodopivec M; Podgornik A; Berovic M; Strancar A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2003 Sep; 795(1):105-13. PubMed ID: 12957174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in immobilized enzymatic reactors and their applications in proteome analysis.
    Ma J; Zhang L; Liang Z; Zhang W; Zhang Y
    Anal Chim Acta; 2009 Jan; 632(1):1-8. PubMed ID: 19100875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilized trypsin on epoxy organic monoliths with modulated hydrophilicity: novel bioreactors useful for protein analysis by liquid chromatography coupled to tandem mass spectrometry.
    Calleri E; Temporini C; Gasparrini F; Simone P; Villani C; Ciogli A; Massolini G
    J Chromatogr A; 2011 Dec; 1218(49):8937-45. PubMed ID: 21679957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow Bioreactors as Complementary Tools for Biocatalytic Process Intensification.
    Tamborini L; Fernandes P; Paradisi F; Molinari F
    Trends Biotechnol; 2018 Jan; 36(1):73-88. PubMed ID: 29054312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophilic monolith based immobilized enzyme reactors in capillary and on microchip for high-throughput proteomic analysis.
    Liang Y; Tao D; Ma J; Sun L; Liang Z; Zhang L; Zhang Y
    J Chromatogr A; 2011 May; 1218(20):2898-905. PubMed ID: 21450299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilized trypsin systems coupled on-line to separation methods: recent developments and analytical applications.
    Massolini G; Calleri E
    J Sep Sci; 2005 Jan; 28(1):7-21. PubMed ID: 15688626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.