BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19195039)

  • 1. Mechanisms of constitutive activation of Janus kinase 2-V617F revealed at the atomic level through molecular dynamics simulations.
    Lee TS; Ma W; Zhang X; Giles F; Kantarjian H; Albitar M
    Cancer; 2009 Apr; 115(8):1692-700. PubMed ID: 19195039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of JAK2 activation by Janus homology 2: evidence from molecular dynamics simulations.
    Wan S; Coveney PV
    J Chem Inf Model; 2012 Nov; 52(11):2992-3000. PubMed ID: 23033920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation loop tyrosines allow the JAK2(V617F) mutant to attain hyperactivation.
    Kundrapu K; Colenberg L; Duhé RJ
    Cell Biochem Biophys; 2008; 52(2):103-12. PubMed ID: 18841497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights into the structure and function of the pseudokinase domain in JAK2.
    Silvennoinen O; Ungureanu D; Niranjan Y; Hammaren H; Bandaranayake R; Hubbard SR
    Biochem Soc Trans; 2013 Aug; 41(4):1002-7. PubMed ID: 23863170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The constitutive activation of Jak2-V617F is mediated by a π stacking mechanism involving phenylalanines 595 and 617.
    Gnanasambandan K; Magis A; Sayeski PP
    Biochemistry; 2010 Nov; 49(46):9972-84. PubMed ID: 20958061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio modeling and experimental assessment of Janus Kinase 2 (JAK2) kinase-pseudokinase complex structure.
    Wan X; Ma Y; McClendon CL; Huang LJ; Huang N
    PLoS Comput Biol; 2013 Apr; 9(4):e1003022. PubMed ID: 23592968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. JAK2 V617F constitutive activation requires JH2 residue F595: a pseudokinase domain target for specific inhibitors.
    Dusa A; Mouton C; Pecquet C; Herman M; Constantinescu SN
    PLoS One; 2010 Jun; 5(6):e11157. PubMed ID: 20585391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of R683S (G) genetic mutations on the JAK2 activity, structure and stability.
    Li F; Guo HY; Wang M; Geng HL; Bian MR; Cao J; Chen C; Zeng LY; Wang XY; Wu QY
    Int J Biol Macromol; 2013 Sep; 60():186-95. PubMed ID: 23748007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the regulation and activation of JAK2: a novel hypothetical model.
    Lee TS
    Mol Cancer Res; 2013 Aug; 11(8):811-4. PubMed ID: 23615525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F.
    Bandaranayake RM; Ungureanu D; Shan Y; Shaw DE; Silvennoinen O; Hubbard SR
    Nat Struct Mol Biol; 2012 Aug; 19(8):754-9. PubMed ID: 22820988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation.
    Hammarén HM; Ungureanu D; Grisouard J; Skoda RC; Hubbard SR; Silvennoinen O
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4642-7. PubMed ID: 25825724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effect of inhibitory strategies of the V617 mutant of JAK2 on cytokine receptor signaling.
    Leroy E; Balligand T; Pecquet C; Mouton C; Colau D; Shiau AK; Dusa A; Constantinescu SN
    J Allergy Clin Immunol; 2019 Jul; 144(1):224-235. PubMed ID: 30707971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncoupling JAK2 V617F activation from cytokine-induced signalling by modulation of JH2 αC helix.
    Leroy E; Dusa A; Colau D; Motamedi A; Cahu X; Mouton C; Huang LJ; Shiau AK; Constantinescu SN
    Biochem J; 2016 Jun; 473(11):1579-91. PubMed ID: 27029346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WP1066, a novel JAK2 inhibitor, suppresses proliferation and induces apoptosis in erythroid human cells carrying the JAK2 V617F mutation.
    Verstovsek S; Manshouri T; Quintás-Cardama A; Harris D; Cortes J; Giles FJ; Kantarjian H; Priebe W; Estrov Z
    Clin Cancer Res; 2008 Feb; 14(3):788-96. PubMed ID: 18245540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative regulation of Jak2 by its auto-phosphorylation at tyrosine 913 via the Epo signaling pathway.
    Funakoshi-Tago M; Tago K; Kasahara T; Parganas E; Ihle JN
    Cell Signal; 2008 Nov; 20(11):1995-2001. PubMed ID: 18682290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of the JAK2 V617F missense mutation by high resolution melting analysis and its validation.
    Er TK; Lin SF; Chang JG; Hsieh LL; Lin SK; Wang LH; Lin CW; Chang CS; Liu TC
    Clin Chim Acta; 2009 Oct; 408(1-2):39-44. PubMed ID: 19595684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Janus kinase 2 activation mechanisms revealed by analysis of suppressing mutations.
    Hammarén HM; Virtanen AT; Abraham BG; Peussa H; Hubbard SR; Silvennoinen O
    J Allergy Clin Immunol; 2019 Apr; 143(4):1549-1559.e6. PubMed ID: 30092288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural effects of clinically observed mutations in JAK2 exons 13-15: comparison with V617F and exon 12 mutations.
    Lee TS; Ma W; Zhang X; Kantarjian H; Albitar M
    BMC Struct Biol; 2009 Sep; 9():58. PubMed ID: 19744331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A shift in the salt bridge interaction of residues D620 and E621 mediates the constitutive activation of Jak2-H538Q/K539L.
    Gnanasambandan K; Magis AT; Sayeski PP
    Mol Cell Biochem; 2012 Aug; 367(1-2):125-40. PubMed ID: 22584586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and Functional Characterization of the JH2 Pseudokinase Domain of JAK Family Tyrosine Kinase 2 (TYK2).
    Min X; Ungureanu D; Maxwell S; Hammarén H; Thibault S; Hillert EK; Ayres M; Greenfield B; Eksterowicz J; Gabel C; Walker N; Silvennoinen O; Wang Z
    J Biol Chem; 2015 Nov; 290(45):27261-27270. PubMed ID: 26359499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.