These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 1919516)

  • 1. Thermal inactivation of Listeria monocytogenes studied by differential scanning calorimetry.
    Anderson WA; Hedges ND; Jones MV; Cole MB
    J Gen Microbiol; 1991 Jun; 137(6):1419-24. PubMed ID: 1919516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat and acid tolerance of Listeria monocytogenes after exposure to single and multiple sublethal stresses.
    Skandamis PN; Yoon Y; Stopforth JD; Kendall PA; Sofos JN
    Food Microbiol; 2008 Apr; 25(2):294-303. PubMed ID: 18206772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced ribosomal thermal denaturation in Listeria monocytogenes following osmotic and heat shocks.
    Stephens PJ; Jones MV
    FEMS Microbiol Lett; 1993 Jan; 106(2):177-82. PubMed ID: 8454183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the effect of lethal and sublethal pH and a(w) stresses on the inactivation or growth of Listeria monocytogenes and Salmonella Typhimurium.
    Tiganitas A; Zeaki N; Gounadaki AS; Drosinos EH; Skandamis PN
    Int J Food Microbiol; 2009 Aug; 134(1-2):104-12. PubMed ID: 19356819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of polyphosphate and sodium chloride on the growth of Listeria monocytogenes and Staphylococcus aureus in ultra-high temperature milk.
    Rajkowski KT; Calderone SM; Jones E
    J Dairy Sci; 1994 Jun; 77(6):1503-8. PubMed ID: 8083407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A predictive model to determine the effects of temperature, sodium pyrophosphate, and sodium chloride on thermal inactivation of starved Listeria monocytogenes in pork slurry.
    Lihono MA; Mendonca AF; Dickson JS; Dixon PM
    J Food Prot; 2003 Jul; 66(7):1216-21. PubMed ID: 12870755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth kinetics and cell morphology of Listeria monocytogenes Scott A as affected by temperature, NaCl, and EDTA.
    Zaika LL; Fanelli JS
    J Food Prot; 2003 Jul; 66(7):1208-15. PubMed ID: 12870754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat resistance of Listeria monocytogenes in semi-skim milk supplemented with vanillin.
    Cava-Roda RM; Taboada A; Palop A; López-Gómez A; Marin-Iniesta F
    Int J Food Microbiol; 2012 Jul; 157(2):314-8. PubMed ID: 22633800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The survival of Listeria monocytogenes during long term desiccation is facilitated by sodium chloride and organic material.
    Vogel BF; Hansen LT; Mordhorst H; Gram L
    Int J Food Microbiol; 2010 Jun; 140(2-3):192-200. PubMed ID: 20471709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the growth, survival and death of Listeria monocytogenes.
    Membré JM; Thurette J; Catteau M
    J Appl Microbiol; 1997 Mar; 82(3):345-50. PubMed ID: 12455898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential scanning calorimetry of bacteria.
    Miles CA; Mackey BM; Parsons SE
    J Gen Microbiol; 1986 Apr; 132(4):939-52. PubMed ID: 3093634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the effects of temperature, sodium chloride, and green tea and their interactions on the thermal inactivation of Listeria monocytogenes in turkey.
    Juneja VK; Garcia-Dávila J; Lopez-Romero JC; Pena-Ramos EA; Camou JP; Valenzuela-Melendres M
    J Food Prot; 2014 Oct; 77(10):1696-702. PubMed ID: 25285486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of Listeria monocytogenes in brine and saline by alternating high-voltage pulsed current.
    Lee MH; Han DW; Woo YI; Uzawa M; Park JC
    J Microbiol Biotechnol; 2008 Jul; 18(7):1274-7. PubMed ID: 18667856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survival of Listeria monocytogenes in high salt concentrations.
    Shahamat M; Seaman A; Woodbine M
    Zentralbl Bakteriol A; 1980; 246(4):506-11. PubMed ID: 6775446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological aspects of Listeria monocytogenes during inactivation accelerated by mild temperatures and otherwise non-growth permissive acidic and hyperosmotic conditions.
    Zhang DL; Ross T; Bowman JP
    Int J Food Microbiol; 2010 Jul; 141(3):177-85. PubMed ID: 20553835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further observations of changed growth of Listeria monocytogenes on salt agar.
    Brzin B
    Zentralbl Bakteriol Orig A; 1975 Jul; 232(2-3):287-93. PubMed ID: 809946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects and interactions of sodium lactate, sodium diacetate, and pediocin on the thermal inactivation of starved Listeria monocytogenes on bologna.
    Grosulescu C; Juneja VK; Ravishankar S
    Food Microbiol; 2011 May; 28(3):440-6. PubMed ID: 21356449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium lactate, sodium diacetate and pediocin: Effects and interactions on the thermal inactivation of Listeria monocytogenes on bologna.
    Maks N; Zhu L; Juneja VK; Ravishankar S
    Food Microbiol; 2010 Feb; 27(1):64-9. PubMed ID: 19913694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of water phase salt content and storage temperature on Listeria monocytogenes survival in chum salmon (Oncorhynchus keta) roe and caviar (ikura).
    Shin JH; Rasco BA
    J Food Sci; 2007 Jun; 72(5):M160-5. PubMed ID: 17995738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of several factors on the heat-shock-induced thermotolerance of Listeria monocytogenes.
    Pagán R; Condón S; Sala FJ
    Appl Environ Microbiol; 1997 Aug; 63(8):3225-32. PubMed ID: 9251209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.