These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 19195667)

  • 1. Generation of primary amide glucosides from cyanogenic glucosides.
    Sendker J; Nahrstedt A
    Phytochemistry; 2009 Feb; 70(3):388-93. PubMed ID: 19195667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of galloylated cyanogenic glucosides and hydrolysable tannins from leaves of Phyllagathis rotundifolia by LC-ESI-MS/MS.
    Hooi Poay T; Sui Kiong L; Cheng Hock C
    Phytochem Anal; 2011; 22(6):516-25. PubMed ID: 21495106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence of Benzoic Acid Esters as Putative Catabolites of Prunasin in Senescent Leaves of Prunus laurocerasus.
    Sendker J; Ellendorff T; Hölzenbein A
    J Nat Prod; 2016 Jul; 79(7):1724-9. PubMed ID: 27331617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of amygdalin and prunasin in Prunus serotina Ehrh. using (1) H-NMR spectroscopy.
    Santos Pimenta LP; Schilthuizen M; Verpoorte R; Choi YH
    Phytochem Anal; 2014; 25(2):122-6. PubMed ID: 24115144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanogenic and non-cyanogenic pyridone glucosides from Acalypha indica (Euphorbiaceae).
    Hungeling M; Lechtenberg M; Fronczek FR; Nahrstedt A
    Phytochemistry; 2009 Jan; 70(2):270-7. PubMed ID: 19157466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenylalanine derived cyanogenic diglucosides from Eucalyptus camphora and their abundances in relation to ontogeny and tissue type.
    Neilson EH; Goodger JQ; Motawia MS; Bjarnholt N; Frisch T; Olsen CE; Møller BL; Woodrow IE
    Phytochemistry; 2011 Dec; 72(18):2325-34. PubMed ID: 21945721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway.
    Takos AM; Knudsen C; Lai D; Kannangara R; Mikkelsen L; Motawia MS; Olsen CE; Sato S; Tabata S; Jørgensen K; Møller BL; Rook F
    Plant J; 2011 Oct; 68(2):273-86. PubMed ID: 21707799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species.
    Pičmanová M; Neilson EH; Motawia MS; Olsen CE; Agerbirk N; Gray CJ; Flitsch S; Meier S; Silvestro D; Jørgensen K; Sánchez-Pérez R; Møller BL; Bjarnholt N
    Biochem J; 2015 Aug; 469(3):375-89. PubMed ID: 26205491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drying and processing protocols affect the quantification of cyanogenic glucosides in forage sorghum.
    Gleadow RM; Møldrup ME; O'Donnell NH; Stuart PN
    J Sci Food Agric; 2012 Aug; 92(11):2234-8. PubMed ID: 22700371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversification of an ancient theme: hydroxynitrile glucosides.
    Bjarnholt N; Rook F; Motawia MS; Cornett C; Jørgensen C; Olsen CE; Jaroszewski JW; Bak S; Møller BL
    Phytochemistry; 2008 May; 69(7):1507-16. PubMed ID: 18342345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General and Stereocontrolled Approach to the Chemical Synthesis of Naturally Occurring Cyanogenic Glucosides.
    Møller BL; Olsen CE; Motawia MS
    J Nat Prod; 2016 Apr; 79(4):1198-202. PubMed ID: 26959700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclopentanoid cyanohydrin glucosides and amides of Lindackeria dentata.
    Jaroszewski JW; Ekpe P; Witt M
    Planta Med; 2004 Oct; 70(10):1001-3. PubMed ID: 15490330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconfigured Cyanogenic Glucoside Biosynthesis in
    Hansen CC; Sørensen M; Veiga TAM; Zibrandtsen JFS; Heskes AM; Olsen CE; Boughton BA; Møller BL; Neilson EHJ
    Plant Physiol; 2018 Nov; 178(3):1081-1095. PubMed ID: 30297456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanogenesis in plants and arthropods.
    Zagrobelny M; Bak S; Møller BL
    Phytochemistry; 2008 May; 69(7):1457-68. PubMed ID: 18353406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxynitrile glucosides.
    Bjarnholt N; Møller BL
    Phytochemistry; 2008 Jul; 69(10):1947-61. PubMed ID: 18539303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroprotective activity of galloylated cyanogenic glucosides and hydrolysable tannins isolated from leaves of Phyllagathis rotundifolia.
    Tan HP; Wong DZ; Ling SK; Chuah CH; Kadir HA
    Fitoterapia; 2012 Jan; 83(1):223-9. PubMed ID: 22093753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The leaf, inner bark and latex cyanide potential of Hevea brasiliensis: evidence for involvement of cyanogenic glucosides in rubber yield.
    Kongsawadworakul P; Viboonjun U; Romruensukharom P; Chantuma P; Ruderman S; Chrestin H
    Phytochemistry; 2009 Apr; 70(6):730-9. PubMed ID: 19409582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyanogenic glucosides in grapevine: polymorphism, identification and developmental patterns.
    Franks TK; Hayasaka Y; Choimes S; van Heeswijck R
    Phytochemistry; 2005 Jan; 66(2):165-73. PubMed ID: 15652573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyanogenic glycosides and menisdaurin from Guazuma ulmifolia, Ostrya virgininana, Tiquilia plicata and Tiquilia canescens.
    Seigler DS
    Phytochemistry; 2005 Jul; 66(13):1567-80. PubMed ID: 16002108
    [No Abstract]   [Full Text] [Related]  

  • 20. Phenolic glucosides from the leaves of Pieris japonica.
    Yao GM; Wang YB; Wang LQ; Qin GW
    Yao Xue Xue Bao; 2008 Mar; 43(3):284-90. PubMed ID: 18630265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.