BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 19195667)

  • 1. Generation of primary amide glucosides from cyanogenic glucosides.
    Sendker J; Nahrstedt A
    Phytochemistry; 2009 Feb; 70(3):388-93. PubMed ID: 19195667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of galloylated cyanogenic glucosides and hydrolysable tannins from leaves of Phyllagathis rotundifolia by LC-ESI-MS/MS.
    Hooi Poay T; Sui Kiong L; Cheng Hock C
    Phytochem Anal; 2011; 22(6):516-25. PubMed ID: 21495106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence of Benzoic Acid Esters as Putative Catabolites of Prunasin in Senescent Leaves of Prunus laurocerasus.
    Sendker J; Ellendorff T; Hölzenbein A
    J Nat Prod; 2016 Jul; 79(7):1724-9. PubMed ID: 27331617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of amygdalin and prunasin in Prunus serotina Ehrh. using (1) H-NMR spectroscopy.
    Santos Pimenta LP; Schilthuizen M; Verpoorte R; Choi YH
    Phytochem Anal; 2014; 25(2):122-6. PubMed ID: 24115144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanogenic and non-cyanogenic pyridone glucosides from Acalypha indica (Euphorbiaceae).
    Hungeling M; Lechtenberg M; Fronczek FR; Nahrstedt A
    Phytochemistry; 2009 Jan; 70(2):270-7. PubMed ID: 19157466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenylalanine derived cyanogenic diglucosides from Eucalyptus camphora and their abundances in relation to ontogeny and tissue type.
    Neilson EH; Goodger JQ; Motawia MS; Bjarnholt N; Frisch T; Olsen CE; Møller BL; Woodrow IE
    Phytochemistry; 2011 Dec; 72(18):2325-34. PubMed ID: 21945721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway.
    Takos AM; Knudsen C; Lai D; Kannangara R; Mikkelsen L; Motawia MS; Olsen CE; Sato S; Tabata S; Jørgensen K; Møller BL; Rook F
    Plant J; 2011 Oct; 68(2):273-86. PubMed ID: 21707799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species.
    Pičmanová M; Neilson EH; Motawia MS; Olsen CE; Agerbirk N; Gray CJ; Flitsch S; Meier S; Silvestro D; Jørgensen K; Sánchez-Pérez R; Møller BL; Bjarnholt N
    Biochem J; 2015 Aug; 469(3):375-89. PubMed ID: 26205491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drying and processing protocols affect the quantification of cyanogenic glucosides in forage sorghum.
    Gleadow RM; Møldrup ME; O'Donnell NH; Stuart PN
    J Sci Food Agric; 2012 Aug; 92(11):2234-8. PubMed ID: 22700371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversification of an ancient theme: hydroxynitrile glucosides.
    Bjarnholt N; Rook F; Motawia MS; Cornett C; Jørgensen C; Olsen CE; Jaroszewski JW; Bak S; Møller BL
    Phytochemistry; 2008 May; 69(7):1507-16. PubMed ID: 18342345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General and Stereocontrolled Approach to the Chemical Synthesis of Naturally Occurring Cyanogenic Glucosides.
    Møller BL; Olsen CE; Motawia MS
    J Nat Prod; 2016 Apr; 79(4):1198-202. PubMed ID: 26959700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclopentanoid cyanohydrin glucosides and amides of Lindackeria dentata.
    Jaroszewski JW; Ekpe P; Witt M
    Planta Med; 2004 Oct; 70(10):1001-3. PubMed ID: 15490330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconfigured Cyanogenic Glucoside Biosynthesis in
    Hansen CC; Sørensen M; Veiga TAM; Zibrandtsen JFS; Heskes AM; Olsen CE; Boughton BA; Møller BL; Neilson EHJ
    Plant Physiol; 2018 Nov; 178(3):1081-1095. PubMed ID: 30297456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanogenesis in plants and arthropods.
    Zagrobelny M; Bak S; Møller BL
    Phytochemistry; 2008 May; 69(7):1457-68. PubMed ID: 18353406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxynitrile glucosides.
    Bjarnholt N; Møller BL
    Phytochemistry; 2008 Jul; 69(10):1947-61. PubMed ID: 18539303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroprotective activity of galloylated cyanogenic glucosides and hydrolysable tannins isolated from leaves of Phyllagathis rotundifolia.
    Tan HP; Wong DZ; Ling SK; Chuah CH; Kadir HA
    Fitoterapia; 2012 Jan; 83(1):223-9. PubMed ID: 22093753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The leaf, inner bark and latex cyanide potential of Hevea brasiliensis: evidence for involvement of cyanogenic glucosides in rubber yield.
    Kongsawadworakul P; Viboonjun U; Romruensukharom P; Chantuma P; Ruderman S; Chrestin H
    Phytochemistry; 2009 Apr; 70(6):730-9. PubMed ID: 19409582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyanogenic glucosides in grapevine: polymorphism, identification and developmental patterns.
    Franks TK; Hayasaka Y; Choimes S; van Heeswijck R
    Phytochemistry; 2005 Jan; 66(2):165-73. PubMed ID: 15652573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyanogenic glycosides and menisdaurin from Guazuma ulmifolia, Ostrya virgininana, Tiquilia plicata and Tiquilia canescens.
    Seigler DS
    Phytochemistry; 2005 Jul; 66(13):1567-80. PubMed ID: 16002108
    [No Abstract]   [Full Text] [Related]  

  • 20. Phenolic glucosides from the leaves of Pieris japonica.
    Yao GM; Wang YB; Wang LQ; Qin GW
    Yao Xue Xue Bao; 2008 Mar; 43(3):284-90. PubMed ID: 18630265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.