BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1919591)

  • 1. Microbial models of mammalian metabolism: fungal metabolism of the diterpene sclareol by Cunninghamella species.
    Kouzi SA; McChesney JD
    J Nat Prod; 1991; 54(2):483-90. PubMed ID: 1919591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxylation and glucoside conjugation in the microbial metabolism of the diterpene sclareol.
    Kouzi SA; McChesney JD
    Xenobiotica; 1991 Oct; 21(10):1311-23. PubMed ID: 1796608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of four biliary metabolites of the diterpene sclareol in the laboratory rat.
    Kouzi SA; McChesney JD; Walker LA
    Xenobiotica; 1993 Jun; 23(6):621-32. PubMed ID: 8212736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure elucidation and antibacterial activity of new fungal metabolites of sclareol.
    Choudhary MI; Siddiqui ZA; Hussain S;
    Chem Biodivers; 2006 Jan; 3(1):54-61. PubMed ID: 17193216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial biotransformation of retinoic acid by Cunninghamella echinulata and Cunninghamella blakesleeana.
    Hartman DA; Basil JB; Robertson LW; Curley RW
    Pharm Res; 1990 Mar; 7(3):270-3. PubMed ID: 2339101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial models of mammalian metabolism: microbial transformation of naproxen.
    el Sayed KA
    Pharmazie; 2000 Dec; 55(12):934-6. PubMed ID: 11189871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial transformation of isocoronarin D by
    Chokchaisiri R; Chaichompoo W; Sukcharoen O; Suksamrarn A; Ganranoo L
    Nat Prod Res; 2019 Oct; 33(20):2890-2896. PubMed ID: 30453782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial models of mammalian metabolism. Biotransformations of N-methylcarbazole using the fungus Cunninghamella echinulata.
    Yang W; Davis PJ
    Drug Metab Dispos; 1992; 20(1):38-46. PubMed ID: 1346994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial models of mammalian metabolism: biotransformations of phenacetin and its O-alkyl homologues with Cunninghamella species.
    Reddy CS; Acosta D; Davis PJ
    Xenobiotica; 1990 Dec; 20(12):1281-97. PubMed ID: 2075748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial transformations of isocupressic acid.
    Lin SJ; Rosazza JP
    J Nat Prod; 1998 Jul; 61(7):922-6. PubMed ID: 9677275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial models of mammalian metabolism: stereoselective metabolism of warfarin in the fungus Cunninghamella elegans.
    Wong YW; Davis PJ
    Pharm Res; 1989 Nov; 6(11):982-7. PubMed ID: 2594692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation, characterization, and antiviral activity of microbial metabolites of stemodin.
    Hufford CD; Badria FA; Abou-Karam M; Shier WT; Rogers RD
    J Nat Prod; 1991; 54(6):1543-52. PubMed ID: 1667410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial transformations of natural antitumor agents. 23. Conversion of withaferin-A to 12 beta- and 15 beta-hydroxy derivatives of withaferin-A.
    Fuska J; Prousek J; Rosazza J; Budesinsky M
    Steroids; 1982 Aug; 40(2):157-69. PubMed ID: 7157453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation and glucose conjugation of synthetic abietane diterpenes by Cunninghamella sp. II. Novel routes to the family of diterpenes from Tripterygium wilfordii.
    Milanova R; Han K; Moore M
    J Nat Prod; 1995 Jan; 58(1):68-73. PubMed ID: 7760079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial models of mammalian metabolism: production of 3'-hydroxywarfarin, a new metabolite of warfarin using Cunninghamella elegans.
    Wong YW; Davis PJ
    J Pharm Sci; 1991 Apr; 80(4):305-8. PubMed ID: 1865328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial models of mammalian metabolism. Furosemide glucoside formation using the fungus Cunninghamella elegans.
    Hezari M; Davis PJ
    Drug Metab Dispos; 1993; 21(2):259-67. PubMed ID: 8097695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose-conjugation of the flavones of Psiadia arabica by Cunninghamella elegans.
    Ibrahim AR; Galal AM; Mossa JS; el-Feraly FS
    Phytochemistry; 1997 Dec; 46(7):1193-5. PubMed ID: 9423290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial hydroxylation and reduction of the diterpene psiadin.
    Orabi KY; Galal AM; Ibrahim AR; El-Feraly FS; McPhail AT
    Z Naturforsch C J Biosci; 2001; 56(3-4):216-22. PubMed ID: 11371011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure elucidation and thermospray high-performance liquid chromatography/mass spectroscopy (HPLC/MS) of the microbial and mammalian metabolites of the antimalarial arteether.
    Hufford CD; Lee IS; ElSohly HN; Chi HT; Baker JK
    Pharm Res; 1990 Sep; 7(9):923-7. PubMed ID: 2235891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation of jervine by Cunninghamella elegans ATCC 9245.
    El Sayed KA; Halim AF; Zaghloul AM; Dunbar DC; McChesney JD
    Phytochemistry; 2000 Sep; 55(1):19-22. PubMed ID: 11021639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.