BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 1919591)

  • 21. Microbial Oxidation of the Fusidic Acid Side Chain by
    Ibrahim AS; Elokely KM; Ferreira D; Ragab AE
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29690500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial transformations of natural antitumor agents. 7. 14-alpha-Hydroxylation of withaferin-A by Cunninghamella elegans (NRRL 1393).
    Rosazza JP; Nicholas AW; Gustafson ME
    Steroids; 1978 May; 31(5):671-9. PubMed ID: 675739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial models of mammalian metabolism. O-Dealkylation of 10,11-dimethoxyaporphine.
    Rosazza JP; Stocklinski AW; Gustafson MA; Adrian J; Smith RV
    J Med Chem; 1975 Aug; 18(8):791-4. PubMed ID: 1159695
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial transformations of natural antitumor agents. IV. Formation of N-(2)-nor-d-tetrandrine by Cunninghamella blakesleeana (ATCC 8688a).
    Davis PJ; Wiese DR; Rosazza JP
    Lloydia; 1977; 40(3):239-46. PubMed ID: 895382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biotransformation of two cytotoxic terpenes, alpha-santonin and sclareol by Botrytis cinerea.
    Farooq A; Tahara S
    Z Naturforsch C J Biosci; 2000; 55(9-10):713-7. PubMed ID: 11098821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fungal metabolism of acenaphthene by Cunninghamella elegans.
    Pothuluri JV; Freeman JP; Evans FE; Cerniglia CE
    Appl Environ Microbiol; 1992 Nov; 58(11):3654-9. PubMed ID: 1482186
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial transformation of naproxen by Cunninghamella species.
    Zhong DF; Sun L; Liu L; Huang HH
    Acta Pharmacol Sin; 2003 May; 24(5):442-7. PubMed ID: 12740180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fungal metabolism of 3-nitrofluoranthene.
    Pothuluri JV; Evans FE; Heinze TM; Cerniglia CE
    J Toxicol Environ Health; 1994 Jun; 42(2):209-18. PubMed ID: 8207756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural Elucidation of Metabolites of Synthetic Cannabinoid UR-144 by Cunninghamella elegans Using Nuclear Magnetic Resonance (NMR) Spectroscopy.
    Watanabe S; Kuzhiumparambil U; Fu S
    AAPS J; 2018 Mar; 20(2):42. PubMed ID: 29520690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial transformation of deoxyandrographolide and their inhibitory activity on LPS-induced NO production in RAW 264.7 macrophages.
    Deng S; Zhang BJ; Wang CY; Tian Y; Yao JH; An L; Huang SS; Peng JY; Liu KX; Ma XC
    Bioorg Med Chem Lett; 2012 Feb; 22(4):1615-8. PubMed ID: 22264489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial transformations of gelomulide G: a member of the rare class of diterpene lactones.
    Choudhary MI; Gondal HY; Abbaskhan A;
    Chem Biodivers; 2005 Oct; 2(10):1401-8. PubMed ID: 17191941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transformation of steviol-16alpha,17-epoxide by Streptomyces griseus and Cunninghamella bainieri.
    Chang SF; Yang LM; Hsu FL; Hsu JY; Liaw JH; Lin SJ
    J Nat Prod; 2006 Oct; 69(10):1450-5. PubMed ID: 17067160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial models of mammalian metabolism. N-dealkylation of furosemide to yield the mammalian metabolite CSA using Cunninghamella elegans.
    Hezari M; Davis PJ
    Drug Metab Dispos; 1992; 20(6):882-8. PubMed ID: 1362941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial transformation of dehydroandrographolide by Cunninghamella elegans.
    Xin XL; Ma XC; Zhang BJ; Su DH; Wu ZM; Wang XJ; Li XY; Yuan QP
    J Asian Nat Prod Res; 2009; 11(2):187-91. PubMed ID: 19219734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biotransformation of amitriptyline by Cunninghamella elegans.
    Zhang D; Evans FE; Freeman JP; Duhart B; Cerniglia CE
    Drug Metab Dispos; 1995 Dec; 23(12):1417-25. PubMed ID: 8689954
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing the Biotransformation Process of Sclareol by Resting Cells of
    Diao M; Li C; Li J; Lu J; Xie N
    J Agric Food Chem; 2022 Aug; 70(34):10563-10570. PubMed ID: 35993186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FT-IR, FT-Raman, UV-visible, and NMR spectroscopy and vibrational properties of the labdane-type diterpene 13-epi-sclareol.
    Chain FE; Leyton P; Paipa C; Fortuna M; Brandán SA
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():303-13. PubMed ID: 25498827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative proteomic analyses of Hyphozyma roseonigra ATCC 20624 in response to sclareol.
    Wang X; Zhang X; Yao Q; Hua D; Qin J
    Braz J Microbiol; 2019 Jan; 50(1):79-84. PubMed ID: 30645731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial transformation of hypoestenone.
    El Sayed KA
    J Nat Prod; 2001 Mar; 64(3):373-5. PubMed ID: 11277761
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biotransformations of imbricatolic acid by Aspergillus niger and Rhizopus nigricans cultures.
    Schmeda-Hirschmann G; Aranda C; Kurina M; Rodríguez JA; Theoduloz C
    Molecules; 2007 May; 12(5):1092-100. PubMed ID: 17873843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.