BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19195996)

  • 1. Oxygen isotope effects as probes of electron transfer mechanisms and structures of activated O2.
    Roth JP
    Acc Chem Res; 2009 Mar; 42(3):399-408. PubMed ID: 19195996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational modeling of oxygen isotope effects on metal-mediated O2 activation at varying temperatures.
    Smirnov VV; Lanci MP; Roth JP
    J Phys Chem A; 2009 Mar; 113(10):1934-45. PubMed ID: 19119940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in studying bioinorganic reaction mechanisms: isotopic probes of activated oxygen intermediates in metalloenzymes.
    Roth JP
    Curr Opin Chem Biol; 2007 Apr; 11(2):142-50. PubMed ID: 17307017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen isotope effects as structural and mechanistic probes in inorganic oxidation chemistry.
    Ashley DC; Brinkley DW; Roth JP
    Inorg Chem; 2010 Apr; 49(8):3661-75. PubMed ID: 20380467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isotopic probing of molecular oxygen activation at copper(I) sites.
    Lanci MP; Smirnov VV; Cramer CJ; Gauchenova EV; Sundermeyer J; Roth JP
    J Am Chem Soc; 2007 Nov; 129(47):14697-709. PubMed ID: 17960903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen isotope effects upon reversible O2-binding reactions: Characterizing mononuclear superoxide and peroxide structures.
    Lanci MP; Roth JP
    J Am Chem Soc; 2006 Dec; 128(50):16006-7. PubMed ID: 17165732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nature of oxygen activation in glucose oxidase from Aspergillus niger: the importance of electrostatic stabilization in superoxide formation.
    Su Q; Klinman JP
    Biochemistry; 1999 Jun; 38(26):8572-81. PubMed ID: 10387105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-dependent transitions between normal and inverse isotope effects pertaining to the interaction of H-H and C-H bonds with transition metal centers.
    Parkin G
    Acc Chem Res; 2009 Feb; 42(2):315-25. PubMed ID: 19133745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of electron transfer in catalysis by copper zinc superoxide dismutase.
    Smirnov VV; Roth JP
    J Am Chem Soc; 2006 Dec; 128(51):16424-5. PubMed ID: 17177351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic isotope effect characterization of the transition state for oxidized nicotinamide adenine dinucleotide hydrolysis by pertussis toxin.
    Scheuring J; Schramm VL
    Biochemistry; 1997 Apr; 36(15):4526-34. PubMed ID: 9109661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen kinetic isotope effects upon catalytic water oxidation by a monomeric ruthenium complex.
    Angeles-Boza AM; Roth JP
    Inorg Chem; 2012 Apr; 51(8):4722-9. PubMed ID: 22462500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The NO+O3 reaction: a triple oxygen isotope perspective on the reaction dynamics and atmospheric implications for the transfer of the ozone isotope anomaly.
    Savarino J; Bhattacharya SK; Morin S; Baroni M; Doussin JF
    J Chem Phys; 2008 May; 128(19):194303. PubMed ID: 18500861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of the di-iron(VI) Intermediate in ferrate-dependent oxygen evolution from water.
    Sarma R; Angeles-Boza AM; Brinkley DW; Roth JP
    J Am Chem Soc; 2012 Sep; 134(37):15371-86. PubMed ID: 22900971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of the hydride reduction of an NAD(+) analogue by isopropyl alcohol in aqueous and acetonitrile solutions: solvent effects, deuterium isotope effects, and mechanism.
    Lu Y; Qu F; Zhao Y; Small AM; Bradshaw J; Moore B
    J Org Chem; 2009 Sep; 74(17):6503-10. PubMed ID: 19670893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The remarkable reactivity of high oxidation state ruthenium and osmium polypyridyl complexes.
    Meyer TJ; Huynh MH
    Inorg Chem; 2003 Dec; 42(25):8140-60. PubMed ID: 14658865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic isotope effects for concerted multiple proton transfer: a direct dynamics study of an active-site model of carbonic anhydrase II.
    Smedarchina Z; Siebrand W; Fernández-Ramos A; Cui Q
    J Am Chem Soc; 2003 Jan; 125(1):243-51. PubMed ID: 12515527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6.
    Carrell TG; Bourles E; Lin M; Dismukes GC
    Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen isotope effects on electron transfer to O2 probed using chemically modified flavins bound to glucose oxidase.
    Roth JP; Wincek R; Nodet G; Edmondson DE; McIntire WS; Klinman JP
    J Am Chem Soc; 2004 Nov; 126(46):15120-31. PubMed ID: 15548009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.