BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19196017)

  • 21. MauG, a novel diheme protein required for tryptophan tryptophylquinone biogenesis.
    Wang Y; Graichen ME; Liu A; Pearson AR; Wilmot CM; Davidson VL
    Biochemistry; 2003 Jun; 42(24):7318-25. PubMed ID: 12809487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for redox cooperativity between c-type hemes of MauG which is likely coupled to oxygen activation during tryptophan tryptophylquinone biosynthesis.
    Li X; Feng M; Wang Y; Tachikawa H; Davidson VL
    Biochemistry; 2006 Jan; 45(3):821-8. PubMed ID: 16411758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A T67A mutation in the proximal pocket of the high-spin heme of MauG stabilizes formation of a mixed-valent FeII/FeIII state and enhances charge resonance stabilization of the bis-FeIV state.
    Shin S; Feng M; Li C; Williamson HR; Choi M; Wilmot CM; Davidson VL
    Biochim Biophys Acta; 2015 Aug; 1847(8):709-16. PubMed ID: 25896561
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structures of MauG in complex with quinol and quinone MADH.
    Yukl ET; Jensen LM; Davidson VL; Wilmot CM
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Jul; 69(Pt 7):738-43. PubMed ID: 23832199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ascorbate protects the diheme enzyme, MauG, against self-inflicted oxidative damage by an unusual antioxidant mechanism.
    Ma Z; Davidson VL
    Biochem J; 2017 Jul; 474(15):2563-2572. PubMed ID: 28634178
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MauG, a diheme enzyme that catalyzes tryptophan tryptophylquinone biosynthesis by remote catalysis.
    Shin S; Davidson VL
    Arch Biochem Biophys; 2014 Feb; 544():112-8. PubMed ID: 24144526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of electron tunneling and hole hopping reactions between different forms of MauG and methylamine dehydrogenase within a natural protein complex.
    Choi M; Shin S; Davidson VL
    Biochemistry; 2012 Sep; 51(35):6942-9. PubMed ID: 22897160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of the loss of the axial tyrosine ligand of the low-spin heme of MauG on its physical properties and reactivity.
    Abu Tarboush N; Shin S; Geng J; Liu A; Davidson VL
    FEBS Lett; 2012 Dec; 586(24):4339-43. PubMed ID: 23127557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uncovering novel biochemistry in the mechanism of tryptophan tryptophylquinone cofactor biosynthesis.
    Wilmot CM; Davidson VL
    Curr Opin Chem Biol; 2009 Oct; 13(4):469-74. PubMed ID: 19648051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MauG: a di-heme enzyme required for methylamine dehydrogenase maturation.
    Wilmot CM; Yukl ET
    Dalton Trans; 2013 Mar; 42(9):3127-35. PubMed ID: 23086017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tryptophan-mediated charge-resonance stabilization in the bis-Fe(IV) redox state of MauG.
    Geng J; Dornevil K; Davidson VL; Liu A
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9639-44. PubMed ID: 23720312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Properties of the high-spin heme of MauG are altered by binding of preMADH at the protein surface 40 Å away.
    Feng M; Ma Z; Crudup BF; Davidson VL
    FEBS Lett; 2017 Jun; 591(11):1566-1572. PubMed ID: 28485817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tryptophan tryptophylquinone cofactor biogenesis in the aromatic amine dehydrogenase of Alcaligenes faecalis. Cofactor assembly and catalytic properties of recombinant enzyme expressed in Paracoccus denitrificans.
    Hothi P; Khadra KA; Combe JP; Leys D; Scrutton NS
    FEBS J; 2005 Nov; 272(22):5894-909. PubMed ID: 16279953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diradical intermediate within the context of tryptophan tryptophylquinone biosynthesis.
    Yukl ET; Liu F; Krzystek J; Shin S; Jensen LM; Davidson VL; Wilmot CM; Liu A
    Proc Natl Acad Sci U S A; 2013 Mar; 110(12):4569-73. PubMed ID: 23487750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A catalytic di-heme bis-Fe(IV) intermediate, alternative to an Fe(IV)=O porphyrin radical.
    Li X; Fu R; Lee S; Krebs C; Davidson VL; Liu A
    Proc Natl Acad Sci U S A; 2008 Jun; 105(25):8597-600. PubMed ID: 18562294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Geometric and electronic structures of the His-Fe(IV)=O and His-Fe(IV)-Tyr hemes of MauG.
    Jensen LM; Meharenna YT; Davidson VL; Poulos TL; Hedman B; Wilmot CM; Sarangi R
    J Biol Inorg Chem; 2012 Dec; 17(8):1241-55. PubMed ID: 23053529
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron transfer from the aminosemiquinone reaction intermediate of methylamine dehydrogenase to amicyanin.
    Bishop GR; Davidson VL
    Biochemistry; 1998 Aug; 37(31):11026-32. PubMed ID: 9692997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutational analysis of mau genes involved in methylamine metabolism in Paracoccus denitrificans.
    van der Palen CJ; Slotboom DJ; Jongejan L; Reijnders WN; Harms N; Duine JA; van Spanning RJ
    Eur J Biochem; 1995 Jun; 230(3):860-71. PubMed ID: 7601147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for a tryptophan tryptophylquinone aminosemiquinone intermediate in the physiologic reaction between methylamine dehydrogenase and amicyanin.
    Bishop GR; Brooks HB; Davidson VL
    Biochemistry; 1996 Jul; 35(27):8948-54. PubMed ID: 8688431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bis-Fe(IV): nature's sniper for long-range oxidation.
    Geng J; Davis I; Liu F; Liu A
    J Biol Inorg Chem; 2014 Oct; 19(7):1057-67. PubMed ID: 24722994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.