These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19196017)

  • 41. Isotope labeling studies reveal the order of oxygen incorporation into the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase.
    Pearson AR; Marimanikkuppam S; Li X; Davidson VL; Wilmot CM
    J Am Chem Soc; 2006 Sep; 128(38):12416-7. PubMed ID: 16984182
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Active site aspartate residues are critical for tryptophan tryptophylquinone biogenesis in methylamine dehydrogenase.
    Jones LH; Pearson AR; Tang Y; Wilmot CM; Davidson VL
    J Biol Chem; 2005 Apr; 280(17):17392-6. PubMed ID: 15734739
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Probing bis-Fe(IV) MauG: experimental evidence for the long-range charge-resonance model.
    Geng J; Davis I; Liu A
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3692-6. PubMed ID: 25631460
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure, function, and applications of tryptophan tryptophylquinone enzymes.
    Davidson VL
    Adv Exp Med Biol; 1999; 467():587-95. PubMed ID: 10721104
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Capturing a
    Manesis AC; Slater JW; Cantave K; Martin Bollinger J; Krebs C; Rosenzweig AC
    Biochemistry; 2023 Mar; 62(5):1082-1092. PubMed ID: 36812111
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Heme iron nitrosyl complex of MauG reveals an efficient redox equilibrium between hemes with only one heme exclusively binding exogenous ligands.
    Fu R; Liu F; Davidson VL; Liu A
    Biochemistry; 2009 Dec; 48(49):11603-5. PubMed ID: 19911786
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanism of reaction of allylamine with the quinoprotein methylamine dehydrogenase.
    Davidson VL; Graichen ME; Jones LH
    Biochem J; 1995 Jun; 308 ( Pt 2)(Pt 2):487-92. PubMed ID: 7772031
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intermolecular electron transfer from substrate-reduced methylamine dehydrogenase to amicyanin is linked to proton transfer.
    Bishop GR; Davidson VL
    Biochemistry; 1995 Sep; 34(37):12082-6. PubMed ID: 7547947
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional and structural characterization of a flavoprotein monooxygenase essential for biogenesis of tryptophylquinone cofactor.
    Oozeki T; Nakai T; Kozakai K; Okamoto K; Kuroda S; Kobayashi K; Tanizawa K; Okajima T
    Nat Commun; 2021 Feb; 12(1):933. PubMed ID: 33568660
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Heterolytic OO bond cleavage: Functional role of Glu113 during bis-Fe(IV) formation in MauG.
    Geng J; Huo L; Liu A
    J Inorg Biochem; 2017 Feb; 167():60-67. PubMed ID: 27907864
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deuterium kinetic isotope effect and stopped-flow kinetic studies of the quinoprotein methylamine dehydrogenase.
    Brooks HB; Jones LH; Davidson VL
    Biochemistry; 1993 Mar; 32(10):2725-9. PubMed ID: 8448129
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein-Derived Cofactors Revisited: Empowering Amino Acid Residues with New Functions.
    Davidson VL
    Biochemistry; 2018 Jun; 57(22):3115-3125. PubMed ID: 29498828
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Site-directed mutagenesis of proline 52 to glycine in amicyanin converts a true electron transfer reaction into one that is conformationally gated.
    Ma JK; Carrell CJ; Mathews FS; Davidson VL
    Biochemistry; 2006 Jul; 45(27):8284-93. PubMed ID: 16819827
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Converting the bis-FeIV state of the diheme enzyme MauG to Compound I decreases the reorganization energy for electron transfer.
    Dow BA; Davidson VL
    Biochem J; 2016 Jan; 473(1):67-72. PubMed ID: 26494530
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Catalysis by the isolated tryptophan tryptophylquinone-containing subunit of aromatic amine dehydrogenase is distinct from native enzyme and synthetic model compounds and allows further probing of TTQ mechanism.
    Hothi P; Lee M; Cullis PM; Leys D; Scrutton NS
    Biochemistry; 2008 Jan; 47(1):183-94. PubMed ID: 18052255
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Redox properties of tryptophan tryptophylquinone enzymes. Correlation with structure and reactivity.
    Zhu Z; Davidson VL
    J Biol Chem; 1998 Jun; 273(23):14254-60. PubMed ID: 9603931
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electron transfer reactions between aromatic amine dehydrogenase and azurin.
    Hyun YL; Davidson VL
    Biochemistry; 1995 Sep; 34(38):12249-54. PubMed ID: 7547967
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrostatic environment of the tryptophylquinone cofactor in methylamine dehydrogenase: evidence from resonance Raman spectroscopy of model compounds.
    Moënne-Loccoz P; Nakamura N; Itoh S; Fukuzumi S; Gorren AC; Duine JA; Sanders-Loehr J
    Biochemistry; 1996 Apr; 35(15):4713-20. PubMed ID: 8664261
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Crystallographic investigations of the tryptophan-derived cofactor in the quinoprotein methylamine dehydrogenase.
    Chen LY; Mathews FS; Davidson VL; Huizinga EG; Vellieux FM; Duine JA; Hol WG
    FEBS Lett; 1991 Aug; 287(1-2):163-6. PubMed ID: 1879526
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enzymatic and electron transfer activities in crystalline protein complexes.
    Merli A; Brodersen DE; Morini B; Chen Z; Durley RC; Mathews FS; Davidson VL; Rossi GL
    J Biol Chem; 1996 Apr; 271(16):9177-80. PubMed ID: 8621571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.