These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 19196178)
1. Anatomical and functional outcomes following a precise, graded, dorsal laceration spinal cord injury in C57BL/6 mice. Hill RL; Zhang YP; Burke DA; Devries WH; Zhang Y; Magnuson DS; Whittemore SR; Shields CB J Neurotrauma; 2009 Jan; 26(1):1-15. PubMed ID: 19196178 [TBL] [Abstract][Full Text] [Related]
2. Diffusion tensor imaging at 3 hours after traumatic spinal cord injury predicts long-term locomotor recovery. Kim JH; Loy DN; Wang Q; Budde MD; Schmidt RE; Trinkaus K; Song SK J Neurotrauma; 2010 Mar; 27(3):587-98. PubMed ID: 20001686 [TBL] [Abstract][Full Text] [Related]
3. Locomotor deficits and adaptive mechanisms after thoracic spinal cord contusion in the adult rat. Collazos-Castro JE; López-Dolado E; Nieto-Sampedro M J Neurotrauma; 2006 Jan; 23(1):1-17. PubMed ID: 16430369 [TBL] [Abstract][Full Text] [Related]
4. Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats. Gensel JC; Tovar CA; Hamers FP; Deibert RJ; Beattie MS; Bresnahan JC J Neurotrauma; 2006 Jan; 23(1):36-54. PubMed ID: 16430371 [TBL] [Abstract][Full Text] [Related]
5. Spinal cord contusion based on precise vertebral stabilization and tissue displacement measured by combined assessment to discriminate small functional differences. Zhang YP; Burke DA; Shields LB; Chekmenev SY; Dincman T; Zhang Y; Zheng Y; Smith RR; Benton RL; DeVries WH; Hu X; Magnuson DS; Whittemore SR; Shields CB J Neurotrauma; 2008 Oct; 25(10):1227-40. PubMed ID: 18986224 [TBL] [Abstract][Full Text] [Related]
6. Forelimb locomotor assessment scale (FLAS): novel assessment of forelimb dysfunction after cervical spinal cord injury. Anderson KD; Sharp KG; Hofstadter M; Irvine KA; Murray M; Steward O Exp Neurol; 2009 Nov; 220(1):23-33. PubMed ID: 19733168 [TBL] [Abstract][Full Text] [Related]
7. Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: relationship to the corticospinal tract. Anderson KD; Gunawan A; Steward O Exp Neurol; 2005 Jul; 194(1):161-74. PubMed ID: 15899253 [TBL] [Abstract][Full Text] [Related]
8. Rapid functional recovery after spinal cord injury in young rats. Brown KM; Wolfe BB; Wrathall JR J Neurotrauma; 2005 May; 22(5):559-74. PubMed ID: 15892601 [TBL] [Abstract][Full Text] [Related]
9. Longitudinal Optogenetic Motor Mapping Revealed Structural and Functional Impairments and Enhanced Corticorubral Projection after Contusive Spinal Cord Injury in Mice. Qian J; Wu W; Xiong W; Chai Z; Xu XM; Jin X J Neurotrauma; 2019 Feb; 36(3):485-499. PubMed ID: 29848155 [TBL] [Abstract][Full Text] [Related]
10. A combined scoring method to assess behavioral recovery after mouse spinal cord injury. Pajoohesh-Ganji A; Byrnes KR; Fatemi G; Faden AI Neurosci Res; 2010 Jun; 67(2):117-25. PubMed ID: 20188770 [TBL] [Abstract][Full Text] [Related]
12. Objective assessment of cervical spinal cord injury levels by transcranial magnetic motor-evoked potentials. Shields CB; Ping Zhang Y; Shields LB; Burke DA; Glassman SD Surg Neurol; 2006 Nov; 66(5):475-83; discussion 483. PubMed ID: 17084191 [TBL] [Abstract][Full Text] [Related]
13. Spinal cord compression injury in the mouse: presentation of a model including assessment of motor dysfunction. Farooque M Acta Neuropathol; 2000 Jul; 100(1):13-22. PubMed ID: 10912915 [TBL] [Abstract][Full Text] [Related]
14. Methylprednisolone fails to improve functional and histological outcome following spinal cord injury in rats. Pereira JE; Costa LM; Cabrita AM; Couto PA; Filipe VM; Magalhães LG; Fornaro M; Di Scipio F; Geuna S; Maurício AC; Varejão AS Exp Neurol; 2009 Nov; 220(1):71-81. PubMed ID: 19665461 [TBL] [Abstract][Full Text] [Related]
15. Profound differences in spontaneous long-term functional recovery after defined spinal tract lesions in the rat. Hendriks WT; Eggers R; Ruitenberg MJ; Blits B; Hamers FP; Verhaagen J; Boer GJ J Neurotrauma; 2006 Jan; 23(1):18-35. PubMed ID: 16430370 [TBL] [Abstract][Full Text] [Related]
16. Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats. Kanagal SG; Muir GD Exp Neurol; 2009 Mar; 216(1):193-206. PubMed ID: 19118552 [TBL] [Abstract][Full Text] [Related]
17. Functional consequences of ethidium bromide demyelination of the mouse ventral spinal cord. Kuypers NJ; James KT; Enzmann GU; Magnuson DS; Whittemore SR Exp Neurol; 2013 Sep; 247():615-22. PubMed ID: 23466931 [TBL] [Abstract][Full Text] [Related]
18. A simple, inexpensive and easily reproducible model of spinal cord injury in mice: morphological and functional assessment. Marques SA; Garcez VF; Del Bel EA; Martinez AM J Neurosci Methods; 2009 Feb; 177(1):183-93. PubMed ID: 19013194 [TBL] [Abstract][Full Text] [Related]
19. Immediate plasticity in the motor pathways after spinal cord hemisection: implications for transcranial magnetic motor-evoked potentials. Fujiki M; Kobayashi H; Inoue R; Ishii K Exp Neurol; 2004 Jun; 187(2):468-77. PubMed ID: 15144873 [TBL] [Abstract][Full Text] [Related]
20. Effects of early surgical decompression on functional and histological outcomes after severe experimental thoracic spinal cord injury. Jalan D; Saini N; Zaidi M; Pallottie A; Elkabes S; Heary RF J Neurosurg Spine; 2017 Jan; 26(1):62-75. PubMed ID: 27636866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]