These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1919662)

  • 1. Phase-dependent modulations of anticipatory postural activity during human locomotion.
    Hirschfeld H; Forssberg H
    J Neurophysiol; 1991 Jul; 66(1):12-9. PubMed ID: 1919662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of anticipatory postural adjustments during locomotion in children.
    Hirschfeld H; Forssberg H
    J Neurophysiol; 1992 Aug; 68(2):542-50. PubMed ID: 1527574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-dependent organization of postural adjustments associated with arm movements while walking.
    Nashner LM; Forssberg H
    J Neurophysiol; 1986 Jun; 55(6):1382-94. PubMed ID: 3734862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
    Trank TV; Chen C; Smith JL
    J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interlimb coordination of leg-muscle activation during perturbation of stance in humans.
    Dietz V; Horstmann GA; Berger W
    J Neurophysiol; 1989 Sep; 62(3):680-93. PubMed ID: 2769353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans.
    Nilsson J; Thorstensson A; Halbertsma J
    Acta Physiol Scand; 1985 Apr; 123(4):457-75. PubMed ID: 3993402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-dependent modulation of proximal and distal postural responses to slips in young and older adults.
    Tang PF; Woollacott MH
    J Gerontol A Biol Sci Med Sci; 1999 Feb; 54(2):M89-102. PubMed ID: 10051861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast voluntary trunk flexion movements in standing: motor patterns.
    Oddsson L; Thorstensson A
    Acta Physiol Scand; 1987 Jan; 129(1):93-106. PubMed ID: 3565047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of postural responses and step initiation: evidence for goal-directed postural interactions.
    Burleigh AL; Horak FB; Malouin F
    J Neurophysiol; 1994 Dec; 72(6):2892-902. PubMed ID: 7897497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early activation of arm and leg muscles following pulls to the waist during walking.
    Misiaszek JE
    Exp Brain Res; 2003 Aug; 151(3):318-29. PubMed ID: 12783148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is lower leg proprioception essential for triggering human automatic postural responses?
    Bloem BR; Allum JH; Carpenter MG; Honegger F
    Exp Brain Res; 2000 Feb; 130(3):375-91. PubMed ID: 10706436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anticipatory postural control following fatigue of postural and focal muscles.
    Kanekar N; Santos MJ; Aruin AS
    Clin Neurophysiol; 2008 Oct; 119(10):2304-13. PubMed ID: 18752990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of changing the initial horizontal location of the center of mass on the anticipatory postural adjustments and task performance associated with step initiation.
    Azuma T; Ito T; Yamashita N
    Gait Posture; 2007 Oct; 26(4):526-31. PubMed ID: 17194591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of human ankle muscle vibration on posture and balance during adaptive locomotion.
    Sorensen KL; Hollands MA; Patla E
    Exp Brain Res; 2002 Mar; 143(1):24-34. PubMed ID: 11907687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arm movements can increase leg muscle activity during submaximal recumbent stepping in neurologically intact individuals.
    de Kam D; Rijken H; Manintveld T; Nienhuis B; Dietz V; Duysens J
    J Appl Physiol (1985); 2013 Jul; 115(1):34-42. PubMed ID: 23661622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The organization of torque and EMG activity during bilateral handle pulls by standing humans.
    Lee WA; Michaels CF; Pai YC
    Exp Brain Res; 1990; 82(2):304-14. PubMed ID: 2286233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromyographic temporal analysis of gait: normal human locomotion.
    Dubo HI; Peat M; Winter DA; Quanbury AO; Hobson DA; Steinke T; Reimer G
    Arch Phys Med Rehabil; 1976 Sep; 57(9):415-20. PubMed ID: 962568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential control of reciprocal inhibition during walking versus postural and voluntary motor tasks in humans.
    Lavoie BA; Devanne H; Capaday C
    J Neurophysiol; 1997 Jul; 78(1):429-38. PubMed ID: 9242291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.