BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 19196867)

  • 1. The NAD biosynthesis inhibitor APO866 has potent antitumor activity against hematologic malignancies.
    Nahimana A; Attinger A; Aubry D; Greaney P; Ireson C; Thougaard AV; Tjørnelund J; Dawson KM; Dupuis M; Duchosal MA
    Blood; 2009 Apr; 113(14):3276-86. PubMed ID: 19196867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. APO866 Increases Antitumor Activity of Cyclosporin-A by Inducing Mitochondrial and Endoplasmic Reticulum Stress in Leukemia Cells.
    Cagnetta A; Caffa I; Acharya C; Soncini D; Acharya P; Adamia S; Pierri I; Bergamaschi M; Garuti A; Fraternali G; Mastracci L; Provenzani A; Zucal C; Damonte G; Salis A; Montecucco F; Patrone F; Ballestrero A; Bruzzone S; Gobbi M; Nencioni A; Cea M
    Clin Cancer Res; 2015 Sep; 21(17):3934-45. PubMed ID: 25964294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A preclinical study on the rescue of normal tissue by nicotinic acid in high-dose treatment with APO866, a specific nicotinamide phosphoribosyltransferase inhibitor.
    Olesen UH; Thougaard AV; Jensen PB; Sehested M
    Mol Cancer Ther; 2010 Jun; 9(6):1609-17. PubMed ID: 20515945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nicotinamide phosphoribosyltransferase inhibitor APO866 induces C6 glioblastoma cell death via autophagy.
    Yang P; Zhang L; Shi QJ; Lu YB; Wu M; Wei EQ; Zhang WP
    Pharmazie; 2015 Oct; 70(10):650-5. PubMed ID: 26601421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The anti-lymphoma activity of APO866, an inhibitor of nicotinamide adenine dinucleotide biosynthesis, is potentialized when used in combination with anti-CD20 antibody.
    Nahimana A; Aubry D; Breton CS; Majjigapu SR; Sordat B; Vogel P; Duchosal MA
    Leuk Lymphoma; 2014 Sep; 55(9):2141-50. PubMed ID: 24283753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-proliferation effect of APO866 on C6 glioblastoma cells by inhibiting nicotinamide phosphoribosyltransferase.
    Zhang LY; Liu LY; Qie LL; Ling KN; Xu LH; Wang F; Fang SH; Lu YB; Hu H; Wei EQ; Zhang WP
    Eur J Pharmacol; 2012 Jan; 674(2-3):163-70. PubMed ID: 22119381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NAD⁺ depletion by APO866 in combination with radiation in a prostate cancer model, results from an in vitro and in vivo study.
    Zerp SF; Vens C; Floot B; Verheij M; van Triest B
    Radiother Oncol; 2014 Feb; 110(2):348-54. PubMed ID: 24412016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NAMPT/PBEF1 enzymatic activity is indispensable for myeloma cell growth and osteoclast activity.
    Venkateshaiah SU; Khan S; Ling W; Bam R; Li X; van Rhee F; Usmani S; Barlogie B; Epstein J; Yaccoby S
    Exp Hematol; 2013 Jun; 41(6):547-557.e2. PubMed ID: 23435312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potent synergistic interaction between the Nampt inhibitor APO866 and the apoptosis activator TRAIL in human leukemia cells.
    Zoppoli G; Cea M; Soncini D; Fruscione F; Rudner J; Moran E; Caffa I; Bedognetti D; Motta G; Ghio R; Ferrando F; Ballestrero A; Parodi S; Belka C; Patrone F; Bruzzone S; Nencioni A
    Exp Hematol; 2010 Nov; 38(11):979-88. PubMed ID: 20696207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combination of the metabolic enzyme inhibitor APO866 and the immune adjuvant L-1-methyl tryptophan induces additive antitumor activity.
    Yang HJ; Yen MC; Lin CC; Lin CM; Chen YL; Weng TY; Huang TT; Wu CL; Lai MD
    Exp Biol Med (Maywood); 2010 Jul; 235(7):869-76. PubMed ID: 20558841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A critical role of autophagy in antileukemia/lymphoma effects of APO866, an inhibitor of NAD biosynthesis.
    Ginet V; Puyal J; Rummel C; Aubry D; Breton C; Cloux AJ; Majjigapu SR; Sordat B; Vogel P; Bruzzone S; Nencioni A; Duchosal MA; Nahimana A
    Autophagy; 2014 Apr; 10(4):603-17. PubMed ID: 24487122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [18F]FLT and [18F]FDG PET for non-invasive treatment monitoring of the nicotinamide phosphoribosyltransferase inhibitor APO866 in human xenografts.
    Jensen MM; Erichsen KD; Johnbeck CB; Björkling F; Madsen J; Bzorek M; Jensen PB; Højgaard L; Sehested M; Kjær A
    PLoS One; 2013; 8(1):e53410. PubMed ID: 23308217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting NAD immunometabolism limits severe graft-versus-host disease and has potent antileukemic activity.
    Gerner RR; Macheiner S; Reider S; Siegmund K; Grabherr F; Mayr L; Texler B; Moser P; Effenberger M; Schwaighofer H; Moschen AR; Kircher B; Oberacher H; Zeiser R; Tilg H; Nachbaur D
    Leukemia; 2020 Jul; 34(7):1885-1897. PubMed ID: 31974433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OT-82, a novel anticancer drug candidate that targets the strong dependence of hematological malignancies on NAD biosynthesis.
    Korotchkina L; Kazyulkin D; Komarov PG; Polinsky A; Andrianova EL; Joshi S; Gupta M; Vujcic S; Kononov E; Toshkov I; Tian Y; Krasnov P; Chernov MV; Veith J; Antoch MP; Middlemiss S; Somers K; Lock RB; Norris MD; Henderson MJ; Haber M; Chernova OB; Gudkov AV
    Leukemia; 2020 Jul; 34(7):1828-1839. PubMed ID: 31896781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells.
    Grozio A; Sociali G; Sturla L; Caffa I; Soncini D; Salis A; Raffaelli N; De Flora A; Nencioni A; Bruzzone S
    J Biol Chem; 2013 Sep; 288(36):25938-25949. PubMed ID: 23880765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of leukocyte infiltration and cartilage degradation by selective inhibition of pre-B cell colony-enhancing factor/visfatin/nicotinamide phosphoribosyltransferase: Apo866-mediated therapy in human fibroblasts and murine collagen-induced arthritis.
    Evans L; Williams AS; Hayes AJ; Jones SA; Nowell M
    Arthritis Rheum; 2011 Jul; 63(7):1866-77. PubMed ID: 21400478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition.
    Cea M; Cagnetta A; Fulciniti M; Tai YT; Hideshima T; Chauhan D; Roccaro A; Sacco A; Calimeri T; Cottini F; Jakubikova J; Kong SY; Patrone F; Nencioni A; Gobbi M; Richardson P; Munshi N; Anderson KC
    Blood; 2012 Oct; 120(17):3519-29. PubMed ID: 22955917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective targeting of NAMPT by KPT-9274 in acute myeloid leukemia.
    Mitchell SR; Larkin K; Grieselhuber NR; Lai TH; Cannon M; Orwick S; Sharma P; Asemelash Y; Zhang P; Goettl VM; Beaver L; Mims A; Puduvalli VK; Blachly JS; Lehman A; Harrington B; Henderson S; Breitbach JT; Williams KE; Dong S; Baloglu E; Senapedis W; Kirschner K; Sampath D; Lapalombella R; Byrd JC
    Blood Adv; 2019 Feb; 3(3):242-255. PubMed ID: 30692102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemopotentiating effects of a novel NAD biosynthesis inhibitor, FK866, in combination with antineoplastic agents.
    Pogrebniak A; Schemainda I; Azzam K; Pelka-Fleischer R; Nüssler V; Hasmann M
    Eur J Med Res; 2006 Aug; 11(8):313-21. PubMed ID: 17052966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting the vulnerability to NAD
    Takao S; Chien W; Madan V; Lin DC; Ding LW; Sun QY; Mayakonda A; Sudo M; Xu L; Chen Y; Jiang YY; Gery S; Lill M; Park E; Senapedis W; Baloglu E; Müschen M; Koeffler HP
    Leukemia; 2018 Mar; 32(3):616-625. PubMed ID: 28904384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.