BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 19196961)

  • 1. CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity.
    Ko HS; Bailey R; Smith WW; Liu Z; Shin JH; Lee YI; Zhang YJ; Jiang H; Ross CA; Moore DJ; Patterson C; Petrucelli L; Dawson TM; Dawson VL
    Proc Natl Acad Sci U S A; 2009 Feb; 106(8):2897-902. PubMed ID: 19196961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of LRRK2 stability by the E3 ubiquitin ligase CHIP.
    Ding X; Goldberg MS
    PLoS One; 2009 Jun; 4(6):e5949. PubMed ID: 19536328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2.
    Wang L; Xie C; Greggio E; Parisiadou L; Shim H; Sun L; Chandran J; Lin X; Lai C; Yang WJ; Moore DJ; Dawson TM; Dawson VL; Chiosis G; Cookson MR; Cai H
    J Neurosci; 2008 Mar; 28(13):3384-91. PubMed ID: 18367605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The G2385R risk factor for Parkinson's disease enhances CHIP-dependent intracellular degradation of LRRK2.
    Rudenko IN; Kaganovich A; Langston RG; Beilina A; Ndukwe K; Kumaran R; Dillman AA; Chia R; Cookson MR
    Biochem J; 2017 Apr; 474(9):1547-1558. PubMed ID: 28320779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The E3 ligase TRIM1 ubiquitinates LRRK2 and controls its localization, degradation, and toxicity.
    Stormo AED; Shavarebi F; FitzGibbon M; Earley EM; Ahrendt H; Lum LS; Verschueren E; Swaney DL; Skibinski G; Ravisankar A; van Haren J; Davis EJ; Johnson JR; Von Dollen J; Balen C; Porath J; Crosio C; Mirescu C; Iaccarino C; Dauer WT; Nichols RJ; Wittmann T; Cox TC; Finkbeiner S; Krogan NJ; Oakes SA; Hiniker A
    J Cell Biol; 2022 Apr; 221(4):. PubMed ID: 35266954
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Wauters F; Cornelissen T; Imberechts D; Martin S; Koentjoro B; Sue C; Vangheluwe P; Vandenberghe W
    Autophagy; 2020 Feb; 16(2):203-222. PubMed ID: 30945962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LRRK2 regulates endoplasmic reticulum-mitochondrial tethering through the PERK-mediated ubiquitination pathway.
    Toyofuku T; Okamoto Y; Ishikawa T; Sasawatari S; Kumanogoh A
    EMBO J; 2020 Jan; 39(2):e100875. PubMed ID: 31821596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration.
    Smith WW; Pei Z; Jiang H; Moore DJ; Liang Y; West AB; Dawson VL; Dawson TM; Ross CA
    Proc Natl Acad Sci U S A; 2005 Dec; 102(51):18676-81. PubMed ID: 16352719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fbxl18 targets LRRK2 for proteasomal degradation and attenuates cell toxicity.
    Ding X; Barodia SK; Ma L; Goldberg MS
    Neurobiol Dis; 2017 Feb; 98():122-136. PubMed ID: 27890708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LRRK2 dephosphorylation increases its ubiquitination.
    Zhao J; Molitor TP; Langston JW; Nichols RJ
    Biochem J; 2015 Jul; 469(1):107-20. PubMed ID: 25939886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ubiqutination via K27 and K29 chains signals aggregation and neuronal protection of LRRK2 by WSB1.
    Nucifora FC; Nucifora LG; Ng CH; Arbez N; Guo Y; Roby E; Shani V; Engelender S; Wei D; Wang XF; Li T; Moore DJ; Pletnikova O; Troncoso JC; Sawa A; Dawson TM; Smith W; Lim KL; Ross CA
    Nat Commun; 2016 Jun; 7():11792. PubMed ID: 27273569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Parkinson's disease protein LRRK2 impairs proteasome substrate clearance without affecting proteasome catalytic activity.
    Lichtenberg M; Mansilla A; Zecchini VR; Fleming A; Rubinsztein DC
    Cell Death Dis; 2011 Aug; 2(8):e196. PubMed ID: 21866175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The E3 ubiquitin ligase CHIP selectively regulates mutant epidermal growth factor receptor by ubiquitination and degradation.
    Chung C; Yoo G; Kim T; Lee D; Lee CS; Cha HR; Park YH; Moon JY; Jung SS; Kim JO; Lee JC; Kim SY; Park HS; Park M; Park DI; Lim DS; Jang KW; Lee JE
    Biochem Biophys Res Commun; 2016 Oct; 479(2):152-158. PubMed ID: 27475501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-dependent accumulation of oligomeric SNCA/α-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: role for therapeutic activation of chaperone-mediated autophagy (CMA).
    Ho PW; Leung CT; Liu H; Pang SY; Lam CS; Xian J; Li L; Kung MH; Ramsden DB; Ho SL
    Autophagy; 2020 Feb; 16(2):347-370. PubMed ID: 30983487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants.
    Li X; Tan YC; Poulose S; Olanow CW; Huang XY; Yue Z
    J Neurochem; 2007 Oct; 103(1):238-47. PubMed ID: 17623048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reevaluation of phosphorylation sites in the Parkinson disease-associated leucine-rich repeat kinase 2.
    Li X; Moore DJ; Xiong Y; Dawson TM; Dawson VL
    J Biol Chem; 2010 Sep; 285(38):29569-76. PubMed ID: 20595391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of leucine-rich repeat kinase 2 (LRRK2) inhibits the processing of uMtCK to induce cell death in a cell culture model system.
    Cui J; Yu M; Niu J; Yue Z; Xu Z
    Biosci Rep; 2011 Oct; 31(5):429-37. PubMed ID: 21370995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity.
    West AB; Moore DJ; Choi C; Andrabi SA; Li X; Dikeman D; Biskup S; Zhang Z; Lim KL; Dawson VL; Dawson TM
    Hum Mol Genet; 2007 Jan; 16(2):223-32. PubMed ID: 17200152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of LRRK2: from kinase to substrate.
    Lobbestael E; Baekelandt V; Taymans JM
    Biochem Soc Trans; 2012 Oct; 40(5):1102-10. PubMed ID: 22988873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nik-related kinase is targeted for proteasomal degradation by the chaperone-dependent ubiquitin ligase CHIP.
    Naito S; Fukushima T; Endo A; Denda K; Komada M
    FEBS Lett; 2020 Jun; 594(11):1778-1786. PubMed ID: 32162334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.